ЭКСПЛУАТАЦИЯ ОБЪЕКТОВ АТОМНОЙ ОТРАСЛИ

УДК 624.04.45.001.3

РЕЗУЛЬТАТЫ ИСПЫТАНИЙ ЗАЩИТНОЙ ОБОЛОЧКИ ЭНЕРГОБЛОКА № 3 РОСТОВСКОЙ АЭС

© 2015 г. В.Н. Медведев^{*}, Александр С. Киселев^{*}, Алексей С. Киселев^{*}, А.Н. Ульянов^{*}, В.Ф. Стрижов^{*}, А.А. Сальников^{**}

^{*} Институт проблем безопасного развития атомной энергетики, Москва ** Филиал ОАО «Концерн Росэнергоатом» «Ростовская АЭС», г. Волгодонск, Ростовская обл.

В работе приводится оценка напряженно-деформированного состояния защитной оболочки энергоблока № 3 Ростовской АЭС с момента окончания преднапряжения до начала приемосдаточных испытаний.

Ключевые слова: защитная оболочка, АЭС, арматурные канаты, бетон, напряжения, усилия.

Поступила в редакцию 11.05.2015

ВВЕДЕНИЕ

Основными воздействиями, формирующими напряженно-деформированное состояние (НДС) защитной оболочки в период приемо-сдаточных интегральных испытаний оболочки на прочность и плотность избыточным давлением являются:

- собственный вес железобетонной защитной оболочки;
- усилия от предварительного напряжения арматурных канатов СПЗО;
- избыточное давление под оболочкой;

– распределение температуры по толщине стенки оболочки, обусловленное колебанием температур внутри и снаружи сооружения.

Оценка эксплуатационной пригодности сооружения выполнялась в соответствии «Программой натурных наблюдений за защитной оболочкой энергоблока №3 Ростовской АЭС в период возведения, преднапряжения, приёмо-сдаточных испытаний и эксплуатации» [Л. 1]. При этом использовались проектные критерии оценки НДС в период приемо-сдаточных испытаний защитной оболочки внутренним избыточным давлением:

– измеренные величины приращений растягивающих напряжений в бетоне от избыточного давления не должны превышать соответствующих величин приращения сжимающих напряжений от преднапряжения оболочки по абсолютной величине;

 совместность работы продольной стержневой арматуры и бетона оболочки (равенство деформаций бетона и стержневой арматуры);

– упругая работа защитной оболочки (пропорциональность изменения приращений измеряемых напряжений в стержневой арматуре и относительных деформаций бетона от изменения избыточного давления);

– величина растягивающих напряжений в стержневой арматуре в моментных зонах не должна превышать Rs в продольной и Rsw в поперечной арматуре;

– ширина раскрытия поверхностных трещин на наружной поверхности бетона оболочки после сброса давления не должна превышать 0,3 мм [Л. 2];

– отсутствие зафиксированного разрушения строительных конструкций (деталей СПЗО, облицовки бетона) защитной оболочки и ее связей с внутренним оборудованием.

©Издательство Национального исследовательского ядерного университета «МИФИ», 2015

МЕДВЕДЕВ и др.

1 ОЦЕНКА НДС ЗАЩИТНОЙ ОБОЛОЧКИ В ПЕРИОД ПРИЕМО-СДАТОЧНЫХ ИСПЫТАНИЙ

Оценка НДС защитной оболочки в период приемо-сдаточных испытаний произведена по следующим данным:

– по показаниям датчиков контрольно-измерительной аппаратуры (КИА), установленных в защитной оболочке 3-го энергоблока Ростовской АЭС в период строительства;

– по показаниям датчиков силы ПСИ-01, установленных на анкерах армоканатов системы преднапряжения защитной оболочки;

 по результатам измерений перемещений стенки защитной оболочки при помощи датчиков типа ПЛПС, установленных в средней части цилиндра защитной оболочки на отметке 36,9 м;

– по результатам измерений геометрических параметров защитной оболочки геодезическими методами;

– по результатам измерения температуры внутри и снаружи защитной оболочки энергоблока, включая температуру на поверхности бетона и окружающей среды.

– по результатам визуального контроля наличие трещин на поверхности бетона.

Приемо-сдаточные испытания защитной оболочки 3-го энергоблока Ростовской АЭС проводились с 08.08.2014 по 14.08.2014 года.

График изменения давления в защитной оболочке в период приемо-сдаточных испытаний на прочность и герметичность приведен на рисунке 1.

Рис. 1. – График изменения давления (кг/см²) в защитной оболочке в период приемо-сдаточных испытаний на прочность и герметичность

1.1 ОЦЕНКА НДС ЗАЩИТНОЙ ОБОЛОЧКИ ПО ПОКАЗАНИЯМ ДАТЧИКОВ КИА

Оценка НДС защитной оболочки приводилась по показаниям датчиков, установленных в защитной оболочке 3-го энергоблока Ростовской АЭС, представленных в виде графиков изменения напряжений в стержневой арматуре, деформаций в бетоне и температуры в зависимости от времени.

В подавляющем большинстве случаев показания приборов после снятия нагрузки возвращались в исходное состояние, а максимальные показания соответствовали максимальной нагрузке (рисунки 2-3). Исключение составляли приращения показаний приборов, располагаемых в особых точках конструкции, где за счет моментных составляющих действующих усилий происходили неупругие деформации. Главным образом в цилиндрической части, на отметках близких к опорному кольцу и к основанию цилиндра, а в купольной части в зонах, располагаемых на радиусах 6 и 12 метров от оси оболочки (рисунок 4).

Рис. 2. – Приращение напряжений в меридиональной стержневой арматуре и измерения температуры в бетоне в период приемо-сдаточных испытаний защитной оболочки, створ №1, отметка 13,2 м

Рис. 3. – Приращение напряжений в меридиональной стержневой арматуре и измерения температуры в бетоне в период приемо-сдаточных испытаний защитной оболочки, створ №1, отметка 32,6 м

Рис. 4. – Приращение напряжений в меридиональной стержневой арматуре и измерения температуры в бетоне в период приемо-сдаточных испытаний защитной оболочки, створ №1, купол, R=6 м

Таким образом, характер приращений напряжений в стержневой арматуре в период приемо-сдаточных испытаний защитной оболочки показал, что конструкция работает в упругой стадии, т.к. после снятия нагрузки показания приборов возвращаются в исходное нулевое состояние. Это позволяет утверждать, что защитная оболочка удовлетворяет проектным критериям оценки НДС в период приемо-сдаточных испытаний.

Поскольку после снятия нагрузки от внутреннего давления показания приборов возвращаются в исходное нулевое состояние, можно говорить о совместности работы продольной стержневой арматуры и бетона оболочки (равенство деформаций бетона и стержневой арматуры).

1.2 ОЦЕНКА ИЗМЕНЕНИЯ УСИЛИЙ В АРМОКАНАТАХ СПЗО ПО ПОКАЗАНИЯМ ДАТЧИКОВ СИЛЫ ПСИ-01

Результаты измерений усилий в армоканатах защитной оболочки при испытаниях на герметичность и прочность показали:

– датчики силы ПСИ-01 работали стабильно, что свидетельствует о надежной работе;

– отсутствуют отказы в работе армоканатов СПЗО, что свидетельствует об их надежности;

– практически отсутствуют изменения усилий на тяжных анкерах армоканатов в зависимости от величины внутреннего давления в защитной оболочке, поскольку действуют силы трения покоя между армоканатом и каналообразователем и отсутствуют изменения геометрии оболочки в прианкерной зоне.

В качестве примера в таблице № 1 приведены результаты измерений усилий в отдельных армоканатах купола защитной оболочки при испытаниях на герметичность и прочность.

N⁰	Дата								
Армоканата	08.08.14,	10.08.14,	10.08.14,	10.08.14,	11.08.14,	12.08.14,	13.08.14,	13.08.14,	14.08.14,
	давление								
	0,0 МПа	0,07МПа	0,19МПа	0,29МПа	0,39МПа	0,45МПа	0,39МПа	0,07МПа	0,0 МПа
	Усилие,								
	тс								
K-5A	865,1	863	864,7	864	864,4	864,3	863,2	864,2	865,2
К-10Б	818,8	815,9	818	816,2	817,5	817,3	816	817,4	819,7
K-11A	829,7	827	830,4	827,4	829	828,3	826,7	828,8	831,7
К-12Б	803,8	801,2	804,4	802	803,5	802,6	801,4	803	806,8
К-13А	831,7	828,9	833	829,7	831,5	830,1	828,6	831,6	834,7
K-14A	850,9	848,4	851,6	849,2	850,7	849,4	848,3	850,4	853,1
К-14Б	841,4	838	841,2	838,4	840,4	839,9	838	840,1	842,8
K-15A	844,5	840,9	844,9	841,4	843,7	842,7	841	843,9	846,6
К-16Б	813	809	813,8	809,6	812	810,8	808,7	812,3	815

Таблица 1. – Результаты измерений усилий в отдельных армоканатах купола защитной оболочки при испытаниях на герметичность и прочность

1.3 ОЦЕНКА РЕЗУЛЬТАТОВ ИЗМЕНЕНИЯ ПЕРЕМЕЩЕНИЙ ЗАЩИТНОЙ ОБОЛОЧКИ ПО ПОКАЗАНИЯМ ПЛПС

В период приемо-сдаточных испытаний защитной оболочки энергоблока № 3 Ростовской АЭС перемещения измерялись двумя независимыми методами: при помощи 12 датчиков типа ПЛПС, установленных в средней части цилиндра защитной оболочки, на отметке 36,9 м. и геодезическими методами.

По результатам показаний датчиков ПЛПС в период приемо-сдаточных испытаний защитной оболочки построены графики измерения перемещений стенки сооружения в радиальном направлении на отметке 36,9 м в створах № 1-4.

Выполненная оценка измерений перемещений стенки защитной оболочки в период приемо-сдаточных испытаний показала, что все 12 датчиков ПЛПС находятся в работоспособном состоянии, в каждом створе наблюдается хорошая сходимость полученных результатов.

При максимальной величине внутреннего давления, равной 0,45 МПа, максимальные перемещения зафиксированы в первом створе и составляют 8,23 мм (см. рисунок 5).

Рис. 5. – Приращения перемещений стенки защитной оболочки в период приемо-сдаточных испытаний, отметка 36,9 м, створ №1

В таблице 2 приведены средние перемещения стенки от обжатия защитной оболочки, определенные по показаниям трех датчиков ПЛПС в каждом створе, где можно видеть, что перемещения защитной оболочки от предварительного напряжения значительно выше перемещений при воздействии максимального испытательного внутреннего давления, равного 0,45 МПа. При этом максимальные превышения радиальных перемещений к оси оболочки наблюдаются в третьем створе и составляют -5,72 мм или 44,14%, минимальные – во втором створе -2,14 мм или 22,46%.

Учитывая, что измеренные величины приращений перемещений в защитной оболочке от преднапряжения значительно превышают соответствующие величины приращения перемещений от избыточного испытательного давления, защитная оболочка удовлетворят проектным критериям оценки НДС в период приемо-сдаточных испытаний.

№ створа	Средние перемещения от обжатия оболочки, мм	Средние перемещения при давлении 0,45 МПа, мм	Превышение перемещений от обжатия оболочки мм %		
1	-10,7	7,95	-2,75	25,70	
2	-9,53	7,39	-2,14	22,46	
3	-12,96	7,24	-5,72	44,14	
4	-12,15	7,22	-4,93	40,58	

Таблица 2. – Средние перемещения стенки защитной оболочки при воздействии преднапряжения и максимального испытательного внутреннего давления

1.4 ОЦЕНКА РЕЗУЛЬТАТОВ ИЗМЕНЕНИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЗАЩИТНОЙ ОБОЛОЧКИ ГЕОДЕЗИЧЕСКИМИ МЕТОДАМИ

В период приемо-сдаточных испытаний выполнялись работы по измерению геометрических параметров защитной оболочки геодезическими методами.

На рисунке 6 приведены графики измеренных значений радиальных перемещений цилиндрической части защитной оболочки, расположенной выше обстройки на отметках 47, 48 и 50 м, створ № 4. На рисунке 7 приведены графики измеренных значений перемещений купольной части защитной оболочки.

Результаты измерений показывают, что максимальные перемещения от воздействия испытательного внутреннего давления в средней части купола не превышают 10 мм, что фактически в два раза меньше аналогичных перемещений при преднапряжении защитной оболочки. Следовательно, проектный критерий оценки НДС о превышении сжимающих перемещений защитной оболочки от преднапряжения над растягивающими перемещениями от испытательного внутреннего давления выполняется.

76

Рис. 6. – Приращения перемещений стенки защитной оболочки в период приемо-сдаточных испытаний, отметка 47.0, 48.0 и 50 м, створ №4

Рис. 7. – Приращения перемещений купола защитной оболочки в период приемо-сдаточных испытаний, створ № 4/3

1.5 РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ЗАЩИТНОЙ ОБОЛОЧКИ В ПЕРИОД ПРИЕМО-СДАТОЧНЫХ ИСПЫТАНИЙ

Приведены результаты измерения температуры внутри и снаружи защитной оболочки энергоблока № 3 Ростовской АЭС в период приемо-сдаточных испытаний, включая температуру на поверхности бетона и окружающей среды (см. таблицу № 3).

Эти результаты использованы в уточняющих расчетах напряженно-деформированного состояния защитной оболочки от воздействия нагрузок, действующих в период приемосдаточных испытаний. При этом на внутренней поверхности стены защитной оболочки температура измерялась на отметке 36 и 45 м, а снаружи – на отметке 46 м.

		Температура внутри оболочки						Темп	ература	снару	жи об	болоч	очки рна в °С 4				
Дата	Время	Отм., м.	Т воз.	Воз. Створах, °С Отм.,		Т воз.	Т пов. бетона в створах,°С										
			·C.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	м.	Ľ.	1	2	3	4							
08.08.14	08:00	36	40	39	37	39	37	46	30	25	27	33	29				
		45		38	37	38	37										
08.08.14	12:00	36	- 39	39	39	40	38	46	32	29	32	38	30				
		45		39	39	39	37										
08.08.14	16:00	36	38	38	39	39	38	46	37	30	34	39	30				
		45		39	39	39	37										
08.08.14	20:00	36	36	39	39	39	38	46	32	32	32	36	30				
		45		39	40	39	40										
08.08.14	24:00	36	36	38	38	39	39	46	30	31	31	34	29				
		45		39	39	39	39										
09.08.14	04:00	36	- 34	37	38	38	37	46	24	20	20	30	26				
		45		38	39	39	39			29 2	20						

Таблица 3. – Результаты измерения температуры внутри и снаружи защитной оболочки в период приемо-сдаточных испытаний

Температура в бетоне защитной оболочки определялась по средней величине температуры в защитной оболочке, а также по показаниям датчиков типа ПТС (преобразователей температуры струнных), установленных на теле защитной оболочки.

В начале испытаний средняя температура внутри оболочки составляла порядка 37 °C, постепенно увеличиваясь к моменту достижения максимального давления (0,45 МПа) до 39 °C, после чего наблюдалось снижение температуры. На завершающем этапе испытаний температура снизилась до 34 °C.

В период приемосдаточных испытаний защитной оболочки по показаниям датчиков ПТС минимальная температура наблюдалась вблизи основания, на отметке 13,2 м, и составляла 29 °C. В средней части цилиндра, на отметке 32,6 м, температура составляла 32÷39 °C. При этом, минимальная температура зафиксирована вблизи створа № 3, а максимальная – вблизи створа № 2. В купольной части оболочки максимальная температура бетона составляла 39 °C.

2 СРАВНЕНИЕ РАСЧЕТНЫХ И ИЗМЕРЕННЫХ ЗНАЧЕНИЙ НДС ЗАЩИТНОЙ ОБОЛОЧКИ В ПЕРИОРД ПРИЕМО-СДАТОЧНЫХ ИСПЫТАНИЙ

2.1 ОПИСАНИЕ ДЕТАЛЬНОЙ РАСЧЕТНОЙ МОДЕЛИ ЗАЩИТНОЙ ОБОЛОЧКИ ЭНЕРГОБЛОКА № 3 РОСТОВСКОЙ АЭС

На рисунке 8 представлен общий вид объемной конечно-элементной расчетной модели защитной оболочки 3-го энергоблока Ростовской АЭС, разработанной для анализа напряженно-деформированного состояния (НДС) ЗО, включающей 188532 объемных конечных элемента, 208716 узлов (более 600000 степени свободы) и около 68000 стержневых конечных элементов (моделирующих стержневую арматуру).

Нагрузка от каждого каната вычисляется отдельно с учетом его геометрии, усилия натяжения и потерь всех видов (анкеровка, трение, релаксация и др.) [Л. 3].

Рис. 8. – Конечноэлементная модель ЗО третьего энергоблока Ростовской АЭС

На рисунке 9 показано распределение интенсивности нагрузки по срединной поверхности модели оболочки, которое соответствует проектной трассировке напрягаемых канатов. Главные оси защитной оболочки соответствуют следующим углам относительно вертикальной оси модели: $I - 160^{\circ}$, $II - 250^{\circ}$, $III - 340^{\circ}$, $IV - 70^{\circ}$. Створы КИА соответствуют следующим углам относительно вертикальной оси модели: $I - 140^{\circ}$, $II - 230^{\circ}$, $III - 320^{\circ}$, $IV - 50^{\circ}$. Угол 0° в модели соответствует углу оси крупных проходок (R=3 м и R=4 м).

Рис. 9. – Распределение интенсивности нагрузки по срединной поверхности модели оболочки

При рассмотрении деформирования железобетонных строительных конструкций при высоких уровнях нагружения необходимо учитывать нелинейные эффекты работы бетона, связанные с образованием микро и макро трещин в бетоне. В алгоритме ПК CONT (паспорт аттестации № 347 от 21 ноября 2013 года), использованном в данной работе для расчета НДС ЗО 3-го блока Ростовской АЭС, данные эффекты учитываются на основе ортотропной модели бетона, которая базируется на предположении, что бетон работает по направлениям главных напряжений или главных деформаций, с которыми совпадают оси ортотропии. Основы теории изложены, например, в монографии Н.И. Карпенко [Л. 4].

2.2 РЕЗУЛЬТАТЫ РАСЧЕТА НДС ЗАЩИТНОЙ ОБОЛОЧКИ ЭНЕРГОБЛОКА №3 РОСТОВСКОЙ АЭС ПЕРЕД ПРИЕМО-СДАТОЧНЫМИ ИСПЫТАНИЯМИ

Приведены результаты расчетов НДС защитной оболочки 3-го блока Ростовской АЭС в период приемо-сдаточных испытаний в процессе приложения испытательного давления с учетом действующих на этот период времени усилий в армоканатах СПЗО и температур окружающей среды. Расчеты проводились в нелинейной постановке для достижения лучшего соответствия расчетных и экспериментальных данных.

Определено деформированное состояние и распределения меридиональных и окружных напряжений в бетоне на внешней поверхности защитной оболочки в процессе ее ступенчатого испытательным давлением от 0,07 до 0,45 МПа. Изменение формы ЗО показано в увеличенном масштабе (с умножением перемещений узлов модели на 200).

Можно отметить, что за исключением локальных областей на куполе бетон защитной оболочки работает в состоянии двухосного сжатия, что обеспечивает ее работоспособность даже при максимальной испытательной нагрузке (рисунок 10).

Рис. 10. – Распределение меридиональных напряжений [МПа] на внешней поверхности защитной оболочки при воздействии испытательного давления P=0,45 МПа

В таблице 4 приведено сравнение расчетных и измеренных значений перемещений стенки защитной оболочки при воздействии преднапряжения и максимального испытательного внутреннего давления на отметке 36,9 м. Можно отметить хорошее соответствие расчетных и экспериментальных результатов.

Таблица 4. – Сравнение расчетных и измеренных значений перемещений стенки защитной оболочки при воздействии преднапряжения и максимального испытательного внутреннего давления на отметке 36,9 м

№ створа	Приращения радиальных	Приращения радиальных				
	перемещений стенки оболочки от	перемещений стенки оболочки при				
	обжатия, мм	давлении 0,45 МПа, мм				
	Измеренные/расчетные	Измеренные/расчетные				
1	-10,7 / -9.8	7,95 / 7.6				
2	-9,53 / -9.62	7,39 / 6.9				
3	-12,96 / -12.4	7,24 / 7.1				
4	-12,15 / -12.6	7,22 / 6.8				

Анализ полученных результатов показал, что расчетные значения перемещений и параметров напряженно-деформированного состояния защитной оболочки энергоблока № 3 Ростовской АЭС при ее преднапряжении и в процессе приемо-сдаточных испытаний качественно и количественно соответствуют измеренным. Максимумы и знаки растягивающих и сжимающих напряжений располагаются в тех же зонах, где они определены и при измерениях.

3 РЕЗУЛЬТАТЫ КОНТРОЛЯ ТРЕЩИНОСТОЙКОСТИ ЗАЩИТНОЙ ОБОЛОЧКИ

Перед испытаниями и в процессе испытаний защитной оболочки выполнялся визуальный контроль с целью выявления трещин в бетоне и их параметров [Л. 5].

Измерения производились с помощью микроскопа измерительного МПБ-3 и лупы измерительной ЛИ-3-10^X.

Полученные результаты показали, что ширина раскрытия трещин на наружной поверхности бетона оболочки при воздействии испытательного внутреннего давления и после сброса давления не превышала 0,3 мм, что удовлетворяет нормативным требованиям действующей нормативной документации [Л. 2].

выводы

1) На основе результатов расчета и измерения параметров НДС строительных конструкций защитной оболочки с помощью КИА АСК НДС, контроля усилий натяжения армоканатов СПЗО с помощью гидродомкратов и с учетом показаний датчиков ПСИ-01 СКУ, измерения геометрических параметров защитной оболочки геодезическими методами и их анализа установлено, что эксплуатационная пригодность защитной оболочки энергоблока № 3 Ростовской АЭС обеспечивается (соответствует проектным требованиям).

2) Характер приращений напряжений в стержневой арматуре в период приемосдаточных испытаний защитной оболочки показал, что конструкция работает в упругой стадии, т.к. после снятия нагрузки показания приборов возвращаются в исходное нулевое состояние. Это позволяет утверждать, что защитная оболочка удовлетворяет проектным критериям оценки НДС в период приемо-сдаточных испытаний.

3) Сравнение деформаций в бетоне и напряжений в стержневой арматуре, измеренных при преднапряжении и в период воздействия максимального испытательного давления показало, что во всех случаях отсутствуют растягивающие напряжения и деформации, что позволяет сделать вывод о достаточном уровне преднапряжения защитной оболочки энергоблока № 3 Ростовской АЭС.

4) Результаты натурных наблюдений при проведении приемо-сдаточных испытаний показали, что ширина раскрытия поверхностных трещин на наружной поверхности бетона защитной оболочки при воздействии испытательного внутреннего давления и после сброса давления не превышала 0,3 мм, что удовлетворяет нормативным требованиям.

5) Проведенный анализ показал. что полученные расчетные значения перемещений и параметров напряженно-деформированного состояния защитной оболочки энергоблока № 3 Ростовской АЭС при ее преднапряжении и в процессе приемо-сдаточных испытаний качественно количественно соответствуют И измеренным. Максимумы и знаки растягивающих и сжимающих напряжений располагаются в тех же зонах где они определены и при измерениях.

6) Таким образом, уточненный расчет НДС защитной оболочки после её преднапряжения и приемо-сдаточных испытаний (при учете фактических физикомеханических свойств используемых материалов, измеренных усилий в армоканатах и фактических геометрических параметров) показал, что достигнутый проектный уровень предварительного напряжения конструкции обеспечивает эксплуатационную пригодность защитной оболочки энергоблока № 3 Ростовской АЭС.

СПИСОК ЛИТЕРАТУРЫ

- 1. Программа натурных наблюдений за защитной оболочкой энергоблока №3 Ростовской АЭС в период возведения, преднапряжения, приёмо-сдаточных испытаний и эксплуатации [Текст]. М.: ОАО «Атомтехэнерго», 2011.
- 2. Нормы проектирования железобетонных конструкций локализующих систем безопасности атомных станций. ПНАЭ Г-10-007- 89 [Текст]. – Госпроматомнадзор СССР, 1991.
- 3. *Медведев, В.Н. и др.* Анализ результатов предварительного напряжения защитной оболочки энергоблока № 3 Ростовской АЭС [Текст] / В.Н. Медведев, А.Н. Ульянов, В.Ф. Стрижов, А.С. Киселев // Безопасность, эффективность и экономика атомной энергетики: тез. Девятой междунар. науч.-техн. конф.: пленарные и секционные доклады. МНТК-2014, Москва, 21–23 мая 2014 г. М., 2014. С. 290–295.
- 4. Карпенко, Н.И. Общие модели механики железобетона [Текст] / Н.И. Карпенко. М.: Стройиздат, 1996. 416 с.
- 5. Отчет ВИТИ НИЯУ МИФИ на тему: «Проведение инструментального контроля геометрических параметров защитной оболочки и физико-механических свойств элементов строительных конструкций» [Текст]. Волгодонск, 2014. 23 с.

REFERENCES

- [1] Programma naturnyh nablyudenij za zashhitnoj obolochkoj energobloka №3 Rostovskoj AES v period vozvedeniya, prednapryazheniya, priyomo-sdatochnyx ispytanij i ekspluatacii [The program of natural supervision over the Rostov NPP power unit № 3 protective cover during construction, pretension, acceptance tests and operation]. M. Pub. OAO «Atomtexenergo» [JSC Atomtekhenergo], 2011. (in Russian)
- [2] Normy proektirovaniya zhelezobetonnyh konstrukcij lokalizuyushhih sistem bezopasnosti atomnyh stancij. PNAE G-10-007-89 [Norms of design of ferroconcrete designs of the localizing security systems of nuclear power plants. PNAE G-10-007 89]. Pub. Gospromatomnadzor SSSR [Gospromatomnadzor of the USSR], 1991. (in Russian)
- [3] Medvedev V.N., Ulyanov A.N., Strizhov V.F., Kiselev A.S. Analiz rezultatov predvaritelnogo napryazheniya zashhitnoj obolochki e'nergobloka № 3 Rostovskoj AES [Analysis of results of

preliminary tension of a protective cover of the Rostov NPP power unit № 3]. Bezopasnost, effektivnost i ekonomika atomnoj energetiki [Safety, efficiency and economy of nuclear power] : tez. Devyatoj mezhdunar. nauch.-tehn. konf.: plenarnye i sekcionnye doklady []. – MNTK[(международная научно-техническая конференция) [theses of the Ninth international scientific and technical conference: plenary and section reports]-2014, Moscow, May 21–23, 2014. M. 2014, p. 290–295. (in Russian)

- [4] Karpenko N.I. Obshhie modeli mexaniki zhelezobetona [General models of mechanics of reinforced concrete]. M. Pub. Strojizdat [Stroyizdat], 1996, ISBN 5-274-01682-0, 416 p. (in Russian)
- [5] Otchet VITI NIYaU MIFI na temu: «Provedenie instrumentalnogo kontrolya geometricheskih parametrov zashhitnoj obolochki i fiziko-mexanicheskix svojstv elementov stroitelnyh konstrukcij» [VITI NRNU MEPhI report: "Carrying out tool control of geometrical parameters of a protective cover and physicomechanical properties of elements of construction designs"]. Volgodonsk, 2014, 23 p. (in Russian)

Test Results of the Rostov NPP Power Unit № 3 Protective Cover

V.N. Medvedev*, Aleksandr S. Kiselev*, Aleksej S. Kiselev*, A.N. Ulyanov*, V.F. Strizhov*, A.A. Salnikov**

 * Institute of nuclear power safe development problems, 52, Bolshaya Tulskaya, Moskow, Russia 113191 e-mail: cont@ibrae.ac.ru
** Rostov NPP the branch of JSC Rosenergoatom Concern, Volgodonsk-28, Rostov region, Russia 347340 e-mail: admin@rosnpp.org.ru

Abstract – The assessment of the intense deformed condition of the Rostov NPP power unit N_{23} protective cover is given in work from the moment of the termination of pretension to acceptance tests.

Keywords: protective cover, NPP, reinforcing ropes, concrete, tension, efforts.