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1.1 Introduction

In the model, we considered the flow between two parallel plates separated by a
distance 2H with a uniform heat flux imposed on both plates [1]. The fluid is driven between
the plates by an applied pressure gradient in the x-direction. Assume the fluid is laminar and

fully developed:

du
—=0v=0andw =0
dx

Then we are to determine the fully developed velocity distribution and the fully
developed temperature distribution, using ANSYS FLUENT CFD Simulation.

1.1.1 Input Parameters:
Inlet velocity = 0.005m/s
Outlet Pressure = 5.00Pa
Heat Flux = 20.00W /m?
Wall Thickness = 0.05m
Inlet Temperature = 300.00K
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1.1.2  Basic Assumptions:
Steady flow

Constant properties
Newtonian fluid

Negligible radiation
Negligible gravity effects
Negligible viscous dissipation
Laminar flow

Fully developed

Negligible end effects
Conduction in y-direction much greater than that of x-direction

S0k W=

e

Uniform Plate Temperature Ty

Uniform Inlet Temperature T, /

2H

u(y)

Fluid in laminar flow
x=0 Temperature Profile (x.y)

Fig. 1 — Laminar flow velocity distribution Fig. 2 — Diagram of Parallel plates Laminar flow

1.2 Analytical Model

1.2.1 Conservation of mass for constant property flow

vy M Y W, (1)
ox 0y 0z
For fully developed flow, v = w = 0, therefore
ou
—=0 2
o 2)
Momentum equation for constant property flow of a Newtonian fluid:
p(aa—V+V-VV):,uV2V—Vp+pg (3)
t

For this case the flow is independent of the z-direction, and the flow looks exactly the same at
every position along the z-axis. Hence, all derivatives in the z-direction vanish [2].

x-component for 2-D steady flow in Cartesian coordinates:

2 2
Yo, M@_uﬂ)@ =u a—bzt+a—‘2} —a—p+Fx “)
ox Oy ox~ Oy ox
o’u) 9
Hos | =2 5)
oy ox
y-momentum reduces to

@ _

dy
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Integrate twice to get:
1dpy’
u(y):__py_+A1y+A2 (6)
udx 2

Impose boundary conditions: u(—H) = 0 and u(H) = 0 (no slip condition at the wall)

2
u(—H):H—d—p—HA1+A2=0 (7)
2u dx
2
u(H):H—@+PL41+A2:O (8)
2u dx
Adding these equations we get:
2
A, :_H_d_p and A =0
2u dx
H? ’
u(r)=—Hdp 1_(lj ©)
2u dx H

Thus, the velocity profile is parabolic in nature.
Recalling the definition of mean velocity u,, and mass flow rate, m:

m=pu, A= pudA (10)
1
u =— dA 11
" [ pu (11)
If the width of the flat plates perpendicular to the flow:
;| H yy2 2
um=;J.jpudydz=l - dp (l) -1 |dy (12)
pHW 3 2, H{2u dx|\\H
W My Y _H_Zd_p(z_lj__ﬂ_zd_p 03
" 2u dx\3H? o 2 dx\3 3u dx
These observed trends of the pressure gradient can be intuitively interpreted as follows: [3]
dp 3u
—=—=1u 14
dx« H* " (14)

Hence we can establish after substitution that the velocity distribution of the fluid flow

is given by:
2
u(y)z%um(l—{%j J (15)

It can be clearly seen that the velocity distribution of the flow is a parabolic curve and it
is also a function of the mean velocity.

We will now decompose the Energy equation of fluid flow. We must say that the energy
equation is needed for thermal analysis of the fluid [4]. The case where we do not need any
thermal analysis, the energy equation is not used. This is also the case in our Simulation
where we had to keep the energy equation on, to Simulate thermal properties.

1.2.2 Energy Equation for constant property flow of a Newtonian fluid:

or .
pcp(§+V-VTj:kV2T+y¢+q (16)

For 2-D steady flow in Cartesian coordinates:
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oTr oT o°T o°T .
—+v— |=k + + up+ 17
”C"(”ax ﬁyJ (axz @zj “o+q (17)
2
ﬁa_T:_af (18)
a Ox Oy
2 2
Where we assume 8_’5}}6_’5
oy ox

The temperature gradient along the x-axis determines the temperature distribution along the y-
axis [4]

Substitute (15) into (18)

*T 3u, dT ’
_2=_M_m_ 1_(1] (19)
oy~ 2 a dx H
Boundary conditions for temperature can be set in any part of the calculation domain
boundary to one of the following types: constant value of temperature, constant value of heat

flux, heat transfer with constant value of ambient temperature and linear profile of
temperature [5]:

dT dT
For constant surface heat flux: — = —2 = const

dx dx
Integrating (19) twice we obtain:

3u_dT 2 4
T(y)==— '"(y— - j+A1y+A2 (20)

2a dr | 2 12H?
Imposing boundary conditions T(—H) = T(+H) = T, (note that T, is unknown):
)_gu_dem H® H'
2a dx\ 2 12H?
dT 2 4
(- )= "0 (H 1

T(H J+A1H+A2 =T 1)

“2a de| 2 _12HZJ_A‘H+A2:T‘ (2

Which transforms to:

2 a del12 2\H) 12\H

But we know that the mean temperature is given as:

1 1
o AC [ puc,TdA= S L uTdy (24)

T, = 1 J‘{Eum[l(lj H{T’y{ u_mdi[i(l} _l[l} +iJ]dy (25)
u,H |2 H 2 a dx 12\ H 2\H 12

After transformation:

TS_T(y)stzu_dem(i 1{1]2 1(1)4] 03

T, =

. _17H?u, dT,
" 35 o dx

(26)
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Dividing (23) by (26), we have:
2 4
T-TO)_ 35 |5 o 3) (2 @7)
T.-T, 136 H H

From (27), we can see that the temperature distribution T (y) is a function of the mean
and surface temperatures. Limited comparison is made with data for flow in channels [6], this is
because we are dealing with laminar flow which is a low Reynolds number flow.

Furthermore, we can theoretically calculate the Nusselt Number:

From heat transfer coefficient h:

k
he s (G—TJ (28)
Ts _Tm 8y y=H
N, =MD _ D, (a—TJ (29)
k, T.-T,\ o),

Due to the small hydraulic diameter used in micro-channel analysis [7], the hydraulic diameter
in this case is just a measure of the distance between the plates.

Where
D, - 44, _ 42H W _aH (30)
P oW
4 2
N =M O\ g g (lj —6(lj +5 31)
T T, dy 136 H H ;
.
N, =4H 8140 g o353 (32)
1Be N H) 17

Dy, is called the hydraulic diameter, where w and H had been defined in the initial
diagram.

After substituting the value of T in (27) into (29), the Nusselt number is calculated to be
8.2353.

1.3 Simulation results
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Fig. 3 — Iteration graph Fig. 4 — Velocity vector contour
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Fig. 5 — Temperature Gradient contour Fig. 6 — Pressure Gradient contour
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Fig.7 — Pressure contour Fig.8 — Temperature contour
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Fig. 9 — Pressure Distribution Fig. 10 — Velocity distribution
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Fig. 11 — Temperature Distribution Fig. 12 — Velocity (u) Distribution
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Fig. 13 — Wall adjacent Temperature Distribution Fig. 14 — Velocity (v) Distribution

1.4 Analysis of Results

The following numerical results were obtained from the functional calculator of the
ANSYS FLUENT CFD after Simulation.

Table 1 — Numerical

Parameters/values Minimum maximum Average
Velocity (m/s) 0.000750 0.007500 0.005000
Temperature (K) 300.0000 300.0690 300.0180
Temperature gradient (K/m) 0.000000 26.58200 11.53400
Pressure gradient (Pa/m) 0.110000 8.295000 0.237000

From the table above, the minimum velocity is less than the inlet velocity, and this
velocity was observed at the outlet.
The results of the table above can be directly interpreted from the various distribution
contours in the Simulation results.
Thermal properties of water at 27°C are as follows:
p =996.5kg/m?
k = 0.612W /mK
u = 0.00088kg/ms
Pr =5.72
Dimension of the Flat plate; Length = 60mm, Width = 14mm
To compare the analytical Nusselt number with the simulation Nusselt number, and
hence to calculate the convective heat transfer coefficient and the heat flux and compare with
the analytical heat flux.
The uniform surface heat flux of laminar flow in a parallel flat plate, we have the
correlation formular for determining the Prandtl number as:

N, =0453Re 2Pt/
Re =PBi 1133 Re ¥ —10.64
7
N, =0453Re, 2 Pr’> =86
Where D, = 20mm

Also using the Churchill and Ozoe Correlation formular for laminar flow in parallel flat
plate, we have:
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0.886Re /Pr

The heat transfer coefficient = =376 .38W /m*°C

X

Therefore the numerical Heat flux is given thus.
q"=h AT =376.38(0.055) = 20.70W / m*

Where AT was read directly from fig-11 (Temperature against chart count)
Since the heat flux is known, the heat transfer coefficient can be used to determine the
local surface temperature.

7,()=T, + 9" =300 + 22
h 376.38

Calculations of temperature distributions, average temperatures, and heat transfer coefficients
are presented for a rectangular geometry [8]. The maximum velocity can be calculated from the
velocity distribution formula, and the result compared to the one on the table above. Since we
already know the mean velocity (average velocity), we also know that in this case, the
velocity depends on the transverse coordinate y [9]. We can easily check the maximum
velocity, which we know occurs at the central axis of the flow where y = 0. Using equation

(15):
u(y)=%um[l—(%j2]

u(0)=u,, = %um = %(0.005) =0.0075m/ s

=300.0559 K

For y = 0, we have

max

This is in good agreement with the CFD Numerical result in the table above.

The inlet pressure was also observed to be 5.05Pa from the Simulation contour.

We can conclude that the Simulation distribution contours clearly described the
temperature and velocity distribution formulae modeled in this research. This can be verified
by comparing the distribution contours and the distribution formulae.

1.5 Conclusion

The Simulation result of Laminar flow between two parallel plates separated by a
distance of 2H, often referred to as Poiseuille flow [10], agreed with the analytical functional
equations of Laminar flow between two parallel plates. The Simulated results produced
distribution contours that describe the temperature and velocity distribution function of the
standard Mass and Energy equations of Modeled Laminar Flow. Though there was slight
difference between the analytical Nusselt number and the Numerical Nusselt number, the
difference can be ascribed to error due to geometrical calculation in the Reynolds number, in
particular the Hydraulic diameter (D). The slight temperature change in the flow is as a result
of molecular interaction between water molecules during the flow, this is the reason why the
outlet temperature is almost the same with the outlet temperature. The study does not consider
heat source. In the case of heat source, the temperature difference would be higher.
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Analysis of Fully Developed Laminar Flow between Parallel Plates with UHF Using

ANSYS CFD
Odii Ch. J.

National Research Tomsk Polytechnic University, Lenin St., 30, Tomsk, Russia, 634050
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Abstract — Laminar flow between two parallel placed solid plates with constant heat flux at the
edges of the plates, is an idealize way of modelling the flow of coolant between parallel fuel plates
commonly used in research Reactors. In this paper, we attempted to validate both the thermal and
fluid properties of a fully developed laminar flow with uniform heat flux using ANSYS FLUENT.
We used the transport equations to generate the velocity and temperature distribution, the pressure
gradient and other profile contours. Then we used ANSYS FLUENT Simulation to generate
profile contours, the results of both methods were compared and it was observed that the velocity
distribution was parabolic from the Simulation, this was in agreement with the analytical result
which predicted that the velocity of the fully developed Laminar flow is parabolic. Also the
presure loss and the temperature rise between the inlet and outlet flow were observed to be very
small.

Keywords: Laminar, uniform, heat, flux, velocity, pressure, temperature, ANSYS, CFD, Nusselts,
number
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