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Ɍɨɦɫкɢɣ ɧɚɰɢɨɧɚɥɶɧɵɣ ɢɫɫɥɟɞɨɜɚɬɟɥɶɫкɢɣ ɩɨɥɢɬɟхɧɢчɟɫкɢɣ ɭɧɢɜɟɪɫɢɬɟɬ, Ɍɨɦɫк, Ɋɨɫɫɢɹ  

 
Ʌаɦɢɧаɪɧɵɣ ɩɨɬɨк ɦɟɠɞɭ ɞɜɭɦɹ ɩаɪаɥɥɟɥɶɧɨ ɪаɫɩɨɥɨɠɟɧɧɵɦɢ ɬɜɟɪɞɵɦɢ ɩɥаɫɬɢɧаɦɢ ɫ 
ɩɨɫɬɨɹɧɧɵɦ ɬɟɩɥɨɜɵɦ ɩɨɬɨкɨɦ ɧа кɪаɹɯ ɩɥаɫɬɢɧ ɹɜɥɹɟɬɫɹ ɢɞɟаɥɶɧɵɦ ɫɩɨɫɨɛɨɦ 
ɦɨɞɟɥɢɪɨɜаɧɢɹ ɩɨɬɨка ɯɥаɞаɝɟɧɬа ɦɟɠɞɭ ɩаɪаɥɥɟɥɶɧɵɦɢ ɬɨɩɥɢɜɧɵɦɢ ɩɥаɫɬɢɧаɦɢ, ɨɛɵɱɧɨ 
ɢɫɩɨɥɶзɭɟɦɵɦɢ ɜ ɢɫɫɥɟɞɨɜаɬɟɥɶɫкɢɯ ɪɟакɬɨɪаɯ. ȼ ɷɬɨɣ ɪаɛɨɬɟ ɦɵ ɭɩɪɨɫɬɢɥɢ ɦɨɞɟɥɶ, 
ɢɫɩɨɥɶзɭɹ ɭɫɥɨɜɢɹ ɝɪаɧɢɰ. Ɇɵ ɢɫɩɨɥɶзɨɜаɥɢ ɭɪаɜɧɟɧɢɹ ɩɟɪɟɧɨɫа ɞɥɹ ɝɟɧɟɪаɰɢɢ 
ɪаɫɩɪɟɞɟɥɟɧɢɹ ɫкɨɪɨɫɬɢ ɢ ɬɟɦɩɟɪаɬɭɪɵ, ɝɪаɞɢɟɧɬа ɞаɜɥɟɧɢɹ ɢ ɞɪɭɝɢɯ ɩɪɨɮɢɥɟɣ кɨɧɬɭɪа. 
Ɂаɬɟɦ ɦɵ ɢɫɩɨɥɶзɨɜаɥɢ ɉɪɨɝɪаɦɦɧɵɣ ɦɨɞɭɥɶ AσSВS FLUEσT ɞɥɹ ɫɨзɞаɧɢɹ ɩɪɨɮɢɥɟɣ 
кɨɧɬɭɪа, ɪɟзɭɥɶɬаɬɵ ɨɛɨɢɯ ɦɟɬɨɞɨɜ ɫɪаɜɧɢɜаɥɢɫɶ, ɢ ɛɵɥɨ ɨɬɦɟɱɟɧɨ, ɱɬɨ ɪаɫɩɪɟɞɟɥɟɧɢɟ 
ɫкɨɪɨɫɬɟɣ ɛɵɥɨ ɩаɪаɛɨɥɢɱɟɫкɢɦ, ɱɬɨ ɫɨɨɬɜɟɬɫɬɜɨɜаɥɨ аɧаɥɢɬɢɱɟɫкɨɦɭ ɪɟзɭɥɶɬаɬɭ, кɨɬɨɪɵɣ 
ɩɪɟɞɫказɵɜаɥ, ɱɬɨ ɫкɨɪɨɫɬɶ ɩɨɥɧɨɝɨ  ɥаɦɢɧаɪɧɨɝɨ ɩɨɬɨк ɹɜɥɹɟɬɫɹ ɩаɪаɛɨɥɢɱɟɫкɨɣ. Ȼɵɥɨ 
ɬакɠɟ ɨɬɦɟɱɟɧɨ, ɱɬɨ ɩɨɬɟɪɹ ɞаɜɥɟɧɢɹ ɢ ɩɨɜɵɲɟɧɢɟ ɬɟɦɩɟɪаɬɭɪɵ ɦɟɠɞɭ ɜɩɭɫкɧɵɦ ɢ 
ɜɵɯɨɞɧɵɦ ɩɨɬɨкаɦɢ ɨɱɟɧɶ ɦаɥɵ. 
 

Ʉɥɸчɟɜɵɟ ɫɥɨɜɚ: ɥаɦɢɧаɪɧɵɣ ɩɨɬɨк, ɮɨɪɦа, ɬɟɩɥɨ, ɮɥɸɫ, ɫкɨɪɨɫɬɶ, ɞаɜɥɟɧɢɟ, ɬɟɦɩɟɪаɬɭɪа, 
ANSYS, ɝɢɞɪɨɞɢɧаɦɢɱɟɫкɨɟ ɦɨɞɟɥɢɪɨɜаɧɢɟ, ɇɭɫɫɟɥɶɬ, ɱɢɫɥɨ. 

 

ɉɨɫɬɭɩɢɥа ɜ ɪɟɞакɰɢɸ: 14.08.2018 

 

1.1 Introduction  

 

In the model, we considered the flow between two parallel plates separated by a 

distance 2� with a uniform heat flux imposed on both plates [1]. The fluid is driven between 

the plates by an applied pressure gradient in the x-direction. Assume the fluid is laminar and 

fully developed: ݀ݔ݀ݑ = ݒ,0 = ݓ ݀݊� 0 = 0 

 

Then we are to determine the fully developed velocity distribution and the fully 

developed temperature distribution, using ANSYS FLUENT CFD Simulation. 

 

1.1.1 Input Parameters: 

Inlet velocity =  ݏ/0.005݉

Outlet Pressure = 5.00ܲ� 

Heat Flux = 20.00ܹ/݉2 

Wall Thickness = 0.05݉ 

Inlet Temperature = 300.00� 
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1.1.2 Basic Assumptions: 

1. Steady flow 

2. Constant properties 

3. Newtonian fluid 

4.  Negligible radiation 

5. Negligible gravity effects 

6. Negligible viscous dissipation 

7. Laminar flow 

8. Fully developed 

9. Negligible end effects 

10. Conduction in y-direction much greater than that of x-direction 

     
 Fig. 1 – Laminar flow velocity distribution Fig. 2 – Diagram of Parallel plates Laminar flow  

 

1.2 Analytical Model 

 

1.2.1 Conservation of mass for constant property flow 
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For fully developed flow, ݒ = ݓ = 0, therefore 
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Momentum equation for constant property flow of a Newtonian fluid: 
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For this case the flow is independent of the z-direction, and the flow looks exactly the same at 

every position along the z-axis. Hence, all derivatives in the z-direction vanish [2]. 

 

x-component for 2-D steady flow in Cartesian coordinates: 
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y-momentum reduces to 
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Integrate twice to get: 
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Impose boundary conditions: ݑ −� = = � ݑ ݀݊� 0 0 (no slip condition at the wall) 
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Adding these equations we get: 
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Thus, the velocity profile is parabolic in nature. 

Recalling the definition of mean velocity ݉ݑ  and mass flow rate,  ݉ : 
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If the width of the flat plates perpendicular to the flow: 

   dy
H

y

dx

dpH

H
udydz

WH
u

HW H

H

m 
















  



1
2

1

2

1
2

0

2

0





 (12) 

 
dx

dpH

dx

dpH
y

H

y

dx

dpH
u

H

m  3
1

3

1

232

22

0

2

32







 








  (13) 

These observed trends of the pressure gradient can be intuitively interpreted as follows: [3] 
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Hence we can establish after substitution that the velocity distribution of the fluid flow 

is given by: 
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It can be clearly seen that the velocity distribution of the flow is a parabolic curve and it 

is also a function of the mean velocity. 

We will now decompose the Energy equation of fluid flow. We must say that the energy 

equation is needed for thermal analysis of the fluid [4]. The case where we do not need any 

thermal analysis, the energy equation is not used. This is also the case in our Simulation 

where we had to keep the energy equation on, to Simulate thermal properties. 

 

1.2.2 Energy Equation for constant property flow of a Newtonian fluid: 
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For 2-D steady flow in Cartesian coordinates: 
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The temperature gradient along the x-axis determines the temperature distribution along the y-

axis [4] 

 

Substitute (15) into (18) 
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Boundary conditions for temperature can be set in any part of the calculation domain 

boundary to one of the following types: constant value of temperature, constant value of heat 

flux, heat transfer with constant value of ambient temperature and linear profile of 

temperature [5]: 
  

For constant surface heat flux: const
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dT m   

Integrating (19) twice we obtain: 
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Imposing boundary conditions ܶ −� = ܶ +� =  :(is unknown ݏܶ note that) ݏܶ
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Which transforms to: 
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But we know that the mean temperature is given as: 
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After transformation: 
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Dividing (23) by (26), we have: 
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From (27), we can see that the temperature distribution ܶ(ݕ) is a function of the mean 

and surface temperatures. Limited comparison is made with data for flow in channels [6], this is 

because we are dealing with laminar flow which is a low Reynolds number flow. 
Furthermore, we can theoretically calculate the Nusselt Number: 

From heat transfer coefficient h: 

 

Hyms

f

y

T

TT

k
h














  (28) 

 

Hyms

h

f

h

u
y

T

TT

D

k

hD
N














  (29)  

 

Due to the small hydraulic diameter used in micro-channel analysis [7], the hydraulic diameter 

in this case is just a measure of the distance between the plates.  

Where  
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ℎܦ   is called the hydraulic diameter, where w and H had been defined in the initial 

diagram. 

After substituting the value of T in (27) into (29), the Nusselt number is calculated to be 

8.2353.  

 

1.3 Simulation results 

 

   
 Fig. 3 – Iteration graph Fig. 4 – Velocity vector contour  
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 Fig. 5 – Temperature Gradient contour Fig. 6 – Pressure Gradient contour  
 

  
 

 Fig.7 – Pressure contour Fig.8 – Temperature contour  
 

  
 

 Fig. 9 – Pressure Distribution Fig. 10 – Velocity distribution  
 

  
 

 Fig. 11 – Temperature Distribution Fig. 12 – Velocity (u) Distribution  
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 Fig. 13 – Wall adjacent Temperature Distribution Fig. 14 – Velocity (v) Distribution  

 

1.4 Analysis of Results 

 

The following numerical results were obtained from the functional calculator of the 

ANSYS FLUENT CFD after Simulation. 

 
Table 1 – Numerical  

Parameters/values Minimum maximum Average 

Velocity (m/s) 0.000750 0.007500 0.005000 

Temperature (K) 300.0000 300.0690 300.0180 

Temperature gradient (K/m) 0.000000 26.58200 11.53400 

Pressure gradient (Pa/m) 0.110000 8.295000 0.237000 

 

From the table above, the minimum velocity is less than the inlet velocity, and this 

velocity was observed at the outlet.  

The results of the table above can be directly interpreted from the various distribution 

contours in the Simulation results. 

Thermal properties of water at 27℃ are as follows: � = 996.5݇�/݉3 ݇ = ߤ �݉/0.612ܹ = ݎܲ ݏ݉/�0.00088݇ = 5.72 

Dimension of the Flat plate; Length = 60mm, Width = 14mm 

To compare the analytical Nusselt number with the simulation Nusselt number, and 

hence to calculate the convective heat transfer coefficient and the heat flux and compare with 

the analytical heat flux. 

The uniform surface heat flux of laminar flow in a parallel flat plate, we have the 

correlation formular for determining the Prandtl number as: 

3
1

2
1

PrRe453.0 xux
N   

23.113Re 


 hm

x

Du
,    64.10Re 2

1

x  

6.8PrRe453.0 3
1

2
1

 xux
N  

Where ܦℎ = 20݉݉ 

Also using the Churchill and Ozoe Correlation formular for laminar flow in parallel flat 

plate, we have: 
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Therefore the numerical Heat flux is given thus: 

  2/70.20055.038.376'' mWThq x   

Where ∆ܶ was read directly from fig-11 (Temperature against chart count) 

Since the heat flux is known, the heat transfer coefficient can be used to determine the 

local surface temperature. 

  K
h

q
TxT

x

ins 0559.300
38.376

5.20
300

''
  

Calculations of temperature distributions, average temperatures, and heat transfer coefficients 

are presented for a rectangular geometry [8]. The maximum velocity can be calculated from the 

velocity distribution formula, and the result compared to the one on the table above.  Since we 

already know the mean velocity (average velocity), we also know that in this case, the 

velocity depends on the transverse coordinate y [9]. We can easily check the maximum 

velocity, which we know occurs at the central axis of the flow where ݕ = 0. Using equation 

(15): 
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
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2

1
2

3

H

y
uyu m

 

For ݕ = 0, we have  

    smuuu m /0075.0005.0
2

3

2

3
0 max   

This is in good agreement with the CFD Numerical result in the table above. 

The inlet pressure was also observed to be 5.05Pa from the Simulation contour. 

We can conclude that the Simulation distribution contours clearly described the 

temperature and velocity distribution formulae modeled in this research. This can be verified 

by comparing the distribution contours and the distribution formulae. 
 

1.5 Conclusion 

 

The Simulation result of Laminar flow between two parallel plates separated by a 

distance of 2H, often referred to as Poiseuille flow [10], agreed with the analytical functional 

equations of Laminar flow between two parallel plates. The Simulated results produced 

distribution contours that describe the temperature and velocity distribution function of the 

standard Mass and Energy equations of Modeled Laminar Flow. Though there was slight 

difference between the analytical Nusselt number and the Numerical Nusselt number, the 

difference can be ascribed to error due to geometrical calculation in the Reynolds number, in 

particular the Hydraulic diameter (ܦℎ ). The slight temperature change in the flow is as a result 

of molecular interaction between water molecules during the flow, this is the reason why the 

outlet temperature is almost the same with the outlet temperature. The study does not consider 

heat source. In the case of heat source, the temperature difference would be higher.  
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Abstract – Laminar flow between two parallel placed solid plates with constant heat flux at the 

edges of the plates, is an idealize way of modelling the flow of coolant between parallel fuel plates 

commonly used in research Reactors. In this paper, we attempted to validate both the thermal and 

fluid properties of a fully developed laminar flow with uniform heat flux using ANSYS FLUENT. 

We used the transport equations to generate the velocity and temperature distribution, the pressure 

gradient and other profile contours. Then we used ANSYS FLUENT Simulation to generate 

profile contours, the results of both methods were compared and it was observed that the velocity 

distribution was parabolic from the Simulation, this was in agreement with the analytical result 

which predicted that the velocity of the fully developed Laminar flow is parabolic. Also the 

presure loss and the temperature rise between the inlet and outlet flow were observed to be very 

small.  

 

Keywords: Laminar, uniform, heat, flux, velocity, pressure, temperature,ANSYS, CFD, Nusselts, 
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