2018-2(27)

Эксплуатация объектов атомной отрасли

Наименование публикацииМОДЕЛИРОВАНИЕ ГАММА-СКАНИРУЮЩЕГО ДЕТЕКТОРА С КОЛЛИМАТОРОМ ДЛЯ ИССЛЕДОВАНИЯ ДИФФЕРЕНЦИАЛЬНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ
Авторы© 2018 Агьекум Эфраим Бонах (Гана), Ю. Данейкин
Адреса авторов

Томский государственный университет, Томск, Томская обл., Россия

АннотацияВ настоящей работе описана разработанная модель радиационного состояния ядерной установки, излагается состав модели, рассмотрены проблемы формирования инженерно-радиационной модели ядерной установки на основе моделирования результатов радиационного контроля и расчетов гамма-излучения в зависимости от состава радионуклидов, активности источников излучения, а также их геометрических размеров и форм. Методы расчета излучения, исходящего от загрязненных узлов элементов ядерной установки, требующих обслуживания или разборки, рассматривают их как источники фотонного излучения, обладающих определенными физическими характеристиками, такими как размеры и активность. Радиоактивные источники рассматриваются как изотропные излучатели. Геометрические размеры и форма таких источников могут быть очень разнообразными. Исследуются существующие методы расчета дозовых полей, создаваемых радионуклидными источниками ионизирующего излучения различных геометрических форм. Обсуждаемые методы основаны на аналогичных подходах и представляют собой математический расчет характеристики поля дозы в зависимости от формы источника, его активности и относительного пространственного расположения расчетной точки в поле и источнике. Поэтому были разработаны специальные методы расчета мощности дозы облучения от протяженных источников.
Ключевые словавывод из эксплуатации, радионуклиды, канонические, моноэнергетические, затухание, детектор, фантом, цилиндр, дезактивация, радиоактивность, гамма
ЯзыкАнглийский
Список литературы

[1] Agostinelli S. etc. GEANT4–a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, Vol. 506, №3, pp. 250–303. (in English)

[2] Briesmeister J.F. LA-7396-M. A General Monte Carlo N-Particle transport code, Version C., 1997, Vol. 4. (in English)

[3] Attix F.H., Tochilin E. (ed.). Sources, Fields, Measurements, and Applications: Radiation Dosimetry. Academic Press, 2016, Vol. 3. (in English)

[4] Koch H.W., Motz J.W. Bremsstrahlung cross-section formulas and related data. Reviews of modern physics, 1959, Vol. 31, №4, p. 920. (in English)

[5] Dillman L.T. Radionuclide decay schemes and nuclear parameters for use in radiation-dose estimation. Journal of Nuclear Medicine, 1969, Vol. 10. (in English)

[6] Storm L., Israel H.I. Photon cross sections from 1 keV to 100 MeV for elements Z=1 to Z=100. Atomic Data and Nuclear Data Tables, 1970, Vol. 7, №6, pp. 565–681. (in English)

[7] Ambient Dose Equivalent. 2017. Available at: www.euronuclear.org/info,encyclopadia/ambientdose (in English)

[8] ICRP. Conversion Coefficients for use in radiological protection against external radiation, 1996. (in English)

[9] Corvan D.J., Sarri G. and Zepf. M., Design of a compact spectrometer for high-flux MeV gamma-ray beam. Review of scientific instruments, 2014. (in English)

[10] Radiation Dosage. 2017. Available at: https://docs.google.com/spreadsheets/d/1d_N0as77OmI0jw7-W-AMx74TWtoM3nh7bAMOki8OJP8/edit?authkey=CKTU3OwP&hl=en_GB&hl=en_GB&authkey=CKTU3OwP#gid=0 (in English)

Страницы66 - 73
URL cтраницыАдрес статьи
 Открыть публикацию