2016-4(21)

Operation of nuclear industry facilities

Article NameDiagnosis of Valves Using Entropy Indicators
AuthorsE.A. Abidova, L.S. Hegay, A.V. Chernov, O.E. Draka, O.J. Pugachyova
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”,
Lenin St., 73/94, Volgodonsk, Rostov region, Russia 34736
e-mail: nii_energomash@mail.ru 

AbstractDiagnosing of the NPP electromechanical equipment demands development of the methods directed to control of wear degree in engine current signal. It is shown that wear influences stochastic signal parameters which aren't estimated by regular methods. The objective of work is development of the methods directed to determination of stochastic parameters of current signal. The following problems are solved: the Shannon’s entropy connection with a condition of electrodriving fittings is theoretically shown; diagnostic signals of the NPP equipment are processed with use of offered and regular methods, and big sensitivity of the Shannon’s entropy in relation to separate types of defects is shown.
Keywordstechnical diagnostics, current and time parameters, spectral analysis, Shannon's entropy, NPP
LanguageRussian
References

[1] Adamenkov A.K., Matveev A.V., Golovlev V.V., Ryazanova M.G., Yaryshev A.B., Ivanov S.M. Opyt razrabotki stacionarnyh sistem diagnostiki armatury [Experience of stationary systems development of fitting diagnostics]. Armaturostroenie [Armature Engineering], 2009, №1(58), pp. 77–80. (in Russian)

[2] Slepov M.T., E.A. Abidova, V.N. Nikiforov, O.Yu. Pugacheva. Texnologii analiza diagnosticheskih parametrov elektroprivodnoj armatury na dejstvuyushhih energoblokah Novovoronezhskoj AES [Technologies of the analysis of diagnostic parameters of electrodriving fittings at the New Voronezh NPP]. Elektrotexnicheskie kompleksy i sistemy upravleniya [Electrotechnical complexes and control systems], 2014, №4, ISSN 1990-5246 , pp. 16–22. (in Russian)

[3] Lei, Y., Z. He, and Y. Zi, A new approach to intelligent fault diagnosis of rotating machinery. Expert Systems with Applications, 2008. 35(4): p. 1593-1600. DOI: 10.1016/j.eswa.2007.08.072 (in English)

[4] Zhang, L., et al., Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Systems with Applications, 2010. 37(8): p. 6077-6085. DOI: 10.1016/j.eswa.2010.02.118 (in English)

[5] P. Thota, H. Dankowicz, Tc-hat: a novel toolbox for the continuation of periodic trajectories in hybrid dynamical systems, SIAM Journal of Applied Dynamical Systems 7(2008) 1283-1322. DOI:10.1137/070703028 (in English)

[6] He, Q., Wang, L. and Liu, B. 2007. Parameter estimation for chaotic systems by particle swarm optimization. Chaos, Solitons and Fractals 34: 654-661. DOI: 10.1155/2016/3795961 (in English)

[7] Chumak O.V. Entropiya i fraktaly v analize dannyh [Entropy and fractals in the data analysis]. M. Izhevsk: Pub. NIC «Regulyarnaya i haoticheskaya dinamika» [SIC "Regular and chaotic dynamics"], Institut kompyuternyh issledovanij [Institute of Computer Science], 2011, ISBN 978-5-93972-852-2, 164 p. (in Russian)

[8] Abidova E.A. Identifikaciya informacionnyh processov v sisteme diagnostiki elektroprivodnoj armatury atomnyh stancij [Identification of information processes in the motorized valve diagnostic system of nuclear power plants]: avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata texnicheskih nauk [Thesis abstract of PhD in Engineering]. – Volgograd, 2011. – 18 p. (in Russian)

Papers69 - 77
URL ArticleURL Article
 Open Article