2017-3(24)

Design, manufacturing and commissioning of nuclear industry equipment

Article NameApplication of D-optimum Experimental Designs in Consideration of Restrictions for Laser Metal Deposition
AuthorsAngelina Marko*1, Benjamin Graf*2, Sergej Gook*3, Michael Rethmeier**,***4
Address

* Fraunhofer Institute for Production Systems and Design Technology, Pascalstraße 8-9, 10587 Berlin, Germany
1 ORCID: 0000-0002-6456-4070
WoS ResearcherID:
O-8906-2017
e-mail: angelina.marko@ipk.fraunhofer.de ;

2 ORCID: 0000-0002-7345-9352
WoS ResearcherID:
O-7530-2017;
3 ORCID: 0000-0002-4350-3850
WoS ResearcherID:
F-8636-2017
e-mail: sergej.gook@ipk.fraunhofer.de

** Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany
4 ORCID: 0000-0001-8123-6696
WoS ResearcherID:
B-9847-2009

AbstractThe process of laser metal deposition can be applied in many ways. Mostly, it is relevant to coating, for repair welding and for additive manufacturing. To increase the effectiveness and the productiveness, a good process understanding is necessary. Statistical test planning is effectual and often used for this purpose. For financial and temporal reasons, a restriction of the test space is reasonable. In this case, it is recommended to use a D-optimal experimental design which is practically applied to extend existing test plans or if process limits are known. This paper investigates the applicability of a D-optimum experimental design for the laser metal deposition. The results are compared to the current results of a full factorial test plan. Known restrictions are used for the limitation of the test space. Ti6Al4 is utilized as substrate material and powder. Comparable results of the D-optimal experimental design and of the full factorial test plan can be demonstrated. However, 80 % of time can be saved by the experimental procedure. For this reason, the application of D-optimal experimental design for laser metal deposition is recommend.
KeywordsDesign of experiments, laser cladding, laser metal deposition, cladding parameter, additive manufacturing, repair welding
LanguageEnglish
References

[1] Arellano-Garcia, H., Schöneberger, J., & Körkel, S. (2007). Optimale Versuchsplanung in der Chemischen Verfahrenstechnik. Chemie-Ingenieur-Technik, 79(10), 1625–1638. https://doi.org/10.1002/cite.200700110 (in German)

[2] Capello, E., Colombo, D., & Previtali, B. (2005). Repairing of sintered tools using laser cladding by wire. Journal of Materials Processing Technology, 164165, 990–1000. https://doi.org/10.1016/j.jmatprotec.2005.02.075 (in English)

[3] DVS - Deutscher Verband für Schweißen und verwandte Verfahren e.V. (2011). Laserstrahl-Auftragschweißen Merkblatt DVS 3215, (02 11). (in German)

[4] Graf, B., Ammer, S., Gumenyuk, A., & Rethmeier, M. (2013). Design of Experiments for Laser Metal Deposition in Maintenance, Repair and Overhaul Applications. Procedia CIRP, 11, 245–248. https://doi.org/10.1016/j.procir.2013.07.031(in English)

[5] Leunda, J., Soriano, C., Sanz, C., & Navas, V. G. (2011). Laser Cladding of Vanadium-Carbide Tool Steels for Die Repair. Physics Procedia, 12, 345–352. https://doi.org/10.1016/j.phpro.2011.03.044 (in English)

[6] Narva, V. K., Marants,  a. V., & Sentyurina, Z. a. (2014). Investigation into laser cladding of steel-titanium carbide powder mixtures on a steel substrate. Russian Journal of Non-Ferrous Metals, 55(3), 282–288. https://doi.org/10.3103/S1067821214030109 (in English)

[7] Paul, C. P., Ganesh, P., Mishra, S. K., Bhargava, P., Negi, J., & Nath, A. K. (2007). Investigating laser rapid manufacturing for Inconel-625 components. Optics and Laser Technology, 39(4), 800–805. https://doi.org/10.1016/j.optlastec.2006.01.008 (in English)

[8] Subramaniam, B. Y. S., Subramaniam, B. Y. S., Lyons, J. W., Lyons, J. W., White, D. R., White, D. R., … Jones, J. E. (1999). Experimental Approach to Selection of Pulsing Parameters in Pulsed GMAW. Welding Journal, (May), 166–172. (in English)

[9] Sun, Y., & Hao, M. (2012). Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser. Optics and Lasers in Engineering, 50(7), 985–995. https://doi.org/10.1016/j.optlaseng.2012.01.018 (in English)

Papers46 - 60
URL ArticleURL Article
 Open Article