2019-3(32)

Operation of nuclear industry facilities

Article Name10.26583/GNS-2019-03-06
Decrease the Volume of Boric Regulation of the Reactivity when Using the Burnable Absorber on the Basis of (GD2O3) in the Fuel Reactor WWER-1200
AuthorsM.A. Abu Sondos1, V.M. Demin2, V.I. Savander3
Address

Institute of Nuclear Physics and Technology (INP&T), National Research Nuclear University «MEPhI»,

Kashirskoye shosse, 31, Moscow, Russia 115409

1ORCID iD: 0000-0003-3954-151X

Wos Researher ID: Abu Sondos Mahmoud Abdelrahman

e-mail: MAbusondos@mephi.ru

2ORCID iD: 0000-0003-3894-9396

Wos Researher ID: Demin Victor Makcemovich

e-mail: VMDemin@mephi.ru

3 ORCID iD: 0000-0001-9309-5616

Wos Researher ID: Savander Vladimer Igorovech

e-mail: VISavander@mephi.ru

AbstractThe paper considers various schemes of placement of the burnable absorbers (BAs) in the system of compensation of excess reactivity in the reactor of WWER type at the extended campaigns for the purpose of decrease in the maximum concentration of the boron absorber. On the basis of the variant optimization the influence of the method of placing the burnable absorber in the fuel rods (homogeneous and heterogeneous) and the amount of the placed burnable absorbers in them on the maximum value of the reactivity reserve compensated by the boron control system are analyzed
KeywordsBurnable absorber (BAs), homogeneous (HBA) and heterogeneous (NHBA) burnable absorber, Serpent, VVER, fuel assemblies (FA), poly-cell, the maximum concentration of boric acid, the liquid system of regulation, excess reactivity, neutron multiplication factor (K∞).
LanguageRussian
References
  1. Burnable Absorbers – Burnable Poisons. URL: ttps: //www.nuclear-power.net /nuclear-power-plant/nuclear- fuel/burnable-absorbers-burnable-poisons/ (аccessed 21.01.2018).
  2. Galperin A, Segev M, Radkowsky. A. Substitution of the Soluble Boron Reactivity Control System of a Pressurized Water Reactor by Gadolinium Burnable Poisons. Nucl. Technol., 75 (1986), P. 127-133. Published online: 10 May 2017.
  3. Fiorini G. L, Gautier G. M, Bergamaschi Y. Feasibility Studies of a Soluble Boron-Free 900-MW (electric) PWR, Safety Systems: Consequences of the Partial or Total Elimination of Soluble Boron on Plant Safety and Plant Systems Architecture. Nucl. Technol., 127 (1999), pp. 239-258. Published online: 10 May 2017.
  4. Jones R.C. Boron Dilution Reactivity Transients: A Regulatory Perspective Proceedings of the OECD/NEA/CSNI Specialist Meeting on Boron Dilution Reactivity Transients, State College (PA), Oct 18–20 (1995).
  5. Stogov Yu.V., Belousov N.I. Savander V.I. et al. Perspektivny`e texnologii ispol`zovaniya oksidnogo uran-gadolinievogo topliva v legkovodny`x reaktorax [Promising Technologies for the Use of Uranium-Gadolinium Oxide Fuel in Light-Water Reactors]. Materialy` XIV seminara po problemam fiziki reaktorov [Proceedings of the XIV Seminar on Reactor Physics]. Moscow: MEPhI. 2006. P. 45-47 (in Russian).
  6. Balestieri D. A STUDY OF UO2/Gd2O3 CJMPOSITE FUEL. IAEA-TECDOC-1036. Vienna (Austria).1998. P. 63-72.
  7. Ermolin V.S., Orunev V.S. O razmeshhenii gadoliniya v central`nom otverstii tve`lov vodovodyany`x reaktorov [Placement of Gadolinium in the Central Opening of Water-Water Reactor Fuel Rods]. Fiziko-texnicheskie problemy` yadernoj e`nergeti [Physical and Technical Problems of Nuclear Power Engineering]. Nauchnaya sessiya MIFI [Scientific Session of MEPhI]. 2008. P. 101-102 (in Russian).
  8. Bergelson B., Belonog V., Gerasimov A. et al. Glubina vy`goraniya yadernogo topliva VVE`R s razny`mi poglotitelyami [Depth of Burn-Up of VVER Nuclear Fuel with Different Absorbers]. Atomnaya e`nergiya [Atomic Energy]. V. 109 Vol. 4 October 2010. P. 240-245 (in Russian).
  9. Abdelghafar Galahom A. Issledovanie vozmozhnosti ispol`zovaniya splava evropiya i Pireksa v kachestve szhigaemogo poglotitelya v PWR [Study of Possibility of Europium and Pyrex Alloy Using as Burnable Absorber in PWR]. Annaly` yadernoj e`nergii [Annals of Nuclear Energy]. Volume 110. December 2017. P. 1127-1133 (in Russian).
  10. Andrushenko S. A., Afrov A. M., Vasil'ev B. Yu., Generalov V. N., Kosourov, K. B., Yu. M. Semchenkov, V. F. Ukraintsev NPP. IEC c reaktorm tepa VVER-1000 [NPP with the Reactor WWER-1000]. Moscow: Logo, 2010. ISBN 978-5-98704-4 (in Russian).
  11. Rules of Nuclear Safety of Nuclear Power Plants. URL: https://www.seogan.ru/np-082-07-pravila-yadernoiy-bezopasnosti-reaktornix-ustanovok-atomnix-stanciiy.html. (Accessed 16.4.2019). (in Russian).
  12. Varley F. Sears. Neutron Scattering Lengths and Cross Sections. Neutron News, Vol. 3, No. 3, 1992, pp. 26-37. Published online: 19 Aug 2006.
  13. Leppänen J. SERPENT – a Continuous-Energy Monte Carlo Reactor Physics Burnup Calculation. Code. VTT Technical Research Centre of Finland. (June 18, 2015).
  14. Chadwick M.B. et al.ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nucl. Data Sheets, 112 (2011), P. 2887-2996, 10.1016/j.nds.2011.11.002.
Papers56 - 65
URL ArticleURL Article
 Open Article