Design, manufacturing and commissioning of nuclear industry equipment
Article Name | 10.26583/GNS-2019-04-04To the Issue of the Valid Form of Hereditary Viscoelasticity with One Creep Kernel |
---|
Authors | A.S. Kravchuk*1, A.I. Kravchuk**2 |
---|
Address | *Polytechnic Research Institute, a branch of the Belarusian National Technical University, Independence Avenue, 65, Minsk, Republic of Belarus 220013
**Belarusian State University, Independence Avenue, 4, Minsk, Republic of Belarus 220030
1 ORCID iD: 0000-0002-4730-7769
Wos Researher ID: AAB-7774-2019
e-mail: ask_belarus@inbox.ru
2 ORCID iD: 0000-0002-6105-4200
Wos Researher ID: AAB-7880-2019
e-mail: anzhelika.kravchuk@gmail.com
|
---|
Abstract | It is established that if the original equations of hereditary viscoelasticity in the traditional form contained two independent viscoelastic operators corresponding to the axial and transverse creep strains, then the record in the components of the deviators of the state equations will already contain three different viscoelastic kernels defined by the compositions of the original two operators. These three operators can coincide up to a real factor only when the Harutyunyan hypothesis about the constancy of transverse deformation (i.e., the constancy of the Poisson's ratio) during creep is fulfilled. Body with a similar viscoelastic behavior are called quasi-elastic. Taking into account the results of studies, as well as the fact that until now only the creep kernel has been experimentally established under axial tension and the transverse creep kernel has never been defined, it is currently not possible to solve the problems of hereditary creep beyond the application of the Harutyunyan hypothesis. It is also obvious that the volumetric strain operator cannot be identical, since it is determined by the composition of the creep operators. The application by some authors in their studies of the hypothesis of the identity of the operator has no mathematical or physical grounds. In the case of nonlinear viscoelasticity (or viscoelastic plasticity), with sufficient accuracy for practice, one should simply linearize the equation of state using the secant module and reduce these problems to the case of linear viscoelasticity already studied in this article. |
---|
Keywords | Quasi-elasticity, hereditary viscoelasticity, creep core, relaxation, Harutyunyan hypothesis. |
---|
Language | Russian |
---|
References |
- Rzhanitsyn A.R. Teoriya polzuchesti [Theory of Creep]. Moskva: Strojizdat [Moscow: Stroyizdat]. 1968. 418 p. (in Russian).
- Gorshkov A.G. Starovoitov E.I., Yarovaya A.V. Mexanika sloisty`x vyazkouprugoplasticheskix e`lementov konstrukcij [Mechanics of Layered Viscoelastic Structural Elements]. Moskva: FIZMATLIT [Moscow: FIZMATLIT]. 2006. 576 p. (in Russian).
- Kravchuk A.S., Kravchuk A.I. Obshhie uravneniya prostranstvennoj i ploskoj zadach mexaniki tverdogo tela v sluchae ispol`zovaniya modeli kvaziuprugogo povedeniya izotropnogo vyazkouprugogo materiala [General Equations of Spatial and Plane Problems of Solid Mechanics in the Case of Using a Model of Quasi-Elastic Behavior of an Isotropic Viscoelastic Material]. Mashinostroenie: setevoj e`lektronny`j nauchny`j zhurnal [Russian Internet Journal of Industrial Engineering]. 2017. V 5, № 1. P. 3-10. URL : http://www.indust-engineering.ru/issues/2017/2017-1.pdf (in Russian).
- Kravchuk A.S., Chigarev A.V. Mexanika kontaktnogo vzaimodejstviya [Mechanics of Contact Interaction]. Minsk : Texnoprint [Minsk: Technoprint]. 2000. 196 p.
- Kravchuk A.S., Chizhik S.A., Kravchuk A.I. Prostejshaya model' indentirovaniya krivolinejnyx biologicheskix ob"ektov konechnyx razmerov [The Simplest Model of Indentation of Curvilinear Biological Objects of Finite Dimensions]. APRIORI. Seriya: Estestvennye i texnicheskie nauki [APRIORI. Series: Natural and Technical Sciences]. 2014. № 4. URL: http://apriori-journal.ru/seria2/4-2014/Kravchuk-Chizhik-Kravchuk.pdf (in Russian).
- Kravchuk A.S., Kravchuk A.I. Prikladnye kontaktnye zadachi dlya obobshhennoj sterzhnevoj modeli pokrytiya [Applied Contact Problems for a Generalized Rod Model of Coverage] Sankt-Peterburg: Naukoemkie texnologii [Saint Petersburg: High Technologies]. 2019. 221 p. URL: http://publishing.intelgr.com/archive/core_model.pdf (in Russian).
- Starovojtov E. I. Vyazkouprugoplasticheskie sloistye plastiny i obolochki [Viscoelastic Plastic Laminated Plates and Shells] Gomel': BelGUT [Gomel: BelGUT]. 2002. 343 p. (in Russian).
- Pleskachevskij Yu.M., Starovojtov E'.I., Yarovaya A.V. Deformirovanie metallopolimernyx sistem [Deformation of Metal-Polymer Systems]. Minsk: Belaruskaya navuka [Minsk: Belarusian Science]. 2004. 342 p. (in Russian).
- Zhuravkov M.A., Starovotov E.I. Mexanika sploshnyx sred. Teoriya uprugosti i plastichnosti [Continuum Mechanics. Theory of Elasticity and Plasticity]. Minsk: BGU [Minsk: BSU]. 2011.
543 p. (in Russian).
- Pleskachevskij Yu.M., Starovojtov E.I., Leonenko D.V. Mexanika trexslojnyx sterzhnej i plastin, svyazannyx s uprugim osnovaniem [Mechanics of Three-Layer Rods and Plates Associated with an Elastic Base]. Moskva: FIZMATLIT [Moscow: FIZMATLIT]. 2011. 560 p. (in Russian).
- Starovoitov E.I., Nagiyev F.B. Foundations of the Theory of Elasticity, Plasticity and Viscoelasticity. Apple Academic Press, Toronto, New Jersey, Canada, USA, 2012. 346 p.
- Kravchuk A.S., Kravchuk A.I., Lopatin S.N. Reshenie fizicheski nelinejnoj zadachi Lyame dlya tolstostennogo cilindra [Solution of the Physically Nonlinear Lyame Problem for a Thick-Walled Cylinder]. Nauka i biznes: puti razvitiya [Science and Business: Ways of Development]. 2018.
№ 5(83). P. 11-16 (in Russian).
|
---|
Papers | 37 - 42 |
---|
URL Article | URL Article |
---|
| Open Article |
---|