2020-1 (34)

Nuclear, radiation and environmental safety

Article NameCharacteristics of Photon Radiation Fields in Iron for Photon Sources with Energies from 10 to 50 MeV
AuthorsI.K. Alhagaish1, V.V. Smirnov,V.K. Sakharov
Address

Institute of Nuclear Physics and Technology (INP&T), National Research Nuclear University «MEPhI»,

Kashirskoye shosse, 31, Moscow, Russia 115409

1ORCID iD: 0000-0003-0099-153X

Wos Researher ID: AAE-8983-2019

e-mail: alhigesh@gmail.com

 

AbstractBased on the results of Monte Carlo calculations of the spatial energy distributions of photons in iron from point isotropic and planar mononirectional monoenergy sources with energies of 10-50 MeV, the air Kerma attenuation multiplicities and dose accumulation factors of the material under consideration are determined.. The calculations take into account the contribution of the fluorescence, annihilation radiation and bremsstrahlung. The independence of the accumulation factors from the angular distribution of the source radiation is shown, and the independence of the attenuation multiplicities from the angular distribution of the source radiation and the weak dependence on its energy in the energy range 30-50 MeV is also shown. The corrections for the barrier protection are determined and their independence from the thickness of the protection and the photon energy of the source is noted. The obtained information allows to reduce the errors of the results of calculations of the thickness of anti-radiation protection of electronic accelerators at high energies, using developed engineering methods of calculation. The obtained information can also be used in calculations of protection against brake radiation of electronic accelerators by engineering methods.
Keywordselectronic accelerators, bremsstrahlung radiation, protection, dose, accumulation factor, attenuation multiplicity, Monte Carlo.
LanguageRussian
References
  1. Mashkovich V.P., Kudryavtseva A.V. Zashchita ot ioniziruyushchikh izlucheniy [Protection against ionizing radiation]. Moskva [Moscow]. Energoatomizdat. 1999. P. 494. (in Russian)
  2. Kazuaki Kosako, Koji Oishi, Takashi Nakamura, Kouichi Sato, Takashi Kamiyama, Yoshiaki Kiyanagi. Shielding Study on Iron and Concrete Assemblies of Bremsstrahlung Photons and Photoneutrons from Copper Target Bombarded by 18, 28 and 38 MeV Electrons. Journal of Nuclear Science and Technology. ISSN: 0022-3131 (Print) 1881-1248.
  3. Fasso A., Ferrari A., Sala P. R. ElectronÄPhoton Transport in FLUKA: Status // Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation, and Applications: Proc. of the Monte Carlo 2000 Conf., Lisbon, 2000. Berlin; Heidelberg: Springer, 2001. P. 159-164.
  4. Storm E., Israel' Kh.. Secheniya vzaimodeystviya gamma-izlucheniya [Cross Sections for the Interaction of Gamma Radiation]. Perevod s anglijskogo [Translated from English]
    V.A. Klimanova, Ye.D. Chistova Moskva [Moscow]. Atomizdat. P. 1973. 252 (in Russian).
  5. American National Standard. Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials. ANSI/ANS-6.4.3-1991.
  6. Ashimizu A., Onda T., Sakamoto Y.. Calculation of Gamma-Ray Buildup Factors up to Depths of 100 mfp by the Method of Invariant Embedding, III Generation of Improved Data Set. J. Nucl. Sci. and Technology. Vol. 41. № 4 2004. P. 413-424.
  7. Bespalov V.I. Lektsii po radiatsionnoy zashchite [Lectures on radiation protection]. Tomsk. Izd-vo Tomskogo politekhnicheskogo universiteta [Tomsk: Publishing House of the Tomsk Polytechnic University]. 2011. P. 348 (in Russian).
  8. NCRP. Radiation Protection Design Guidelines 1-100 MeV Particle Accelerator Facilities. NCRP Report № 51. 1977.
  9. Gigiyenicheskiye trebovaniya o razmeshchenii i ekspluatatsii uskoriteley elektronov s energiyey do 100 MeV [Hygienic Requirements for the Placement and Operation of Electron Accelerators with Energies up to 100 MeV]. SanPin 2.6.1.2573-10, 2010 (in Russian).
  10. Sakharov V.K. Kratnosti oslableniya dozy fotonov v betone, zheleze isvintse dlya monoenergeticheskikh istochnikov s energiyami ot 10 do 90MeV [Multiples of Attenuation of the Dose of Photons in Concrete, Iron and Lead for Monoenergetic Sources with Energies from 10 to 90 MeV]. ZH. Yadernaya fizika i inzhiniring [Nuclear Physics and Engineering]. 2016. Vol. 7, №. 3
    (in Russian).
  11. Sakharov V.K., Borisenko A.V., Dozovyye faktory nakopleniya v betone, zheleze i svintse dlya istochnikov monoenergeticheskikh fotonov s energiyami ot 10 do 50 MeV [Dose Factors of Accumulation in Concrete, Iron and Lead for Monoenergetic Photon Sources with Energies from 10 to 50 MeV]. Atomnaya energiya [Atomic energy] Vol. 114. No. 6. 2014 (in Russian).
  12. Yukio FUJITA, Hidetoshi SAITOH and Atsushi MYOJOYAMA, J. Bremsstrahlung and Photoneutron Leakage from Steel Shielding Board Impinged by 12-24 MeV Electrons Beams // Radiat. Res. 50. 363-369 (2009).

 

Papers17 - 25
URL ArticleURL Article
 Open Article