2020, 4 (37)

Nuclear, radiation and environmental safety

Article NameThe Investigation of Fire Effects to Structural Elements of a Mobile Unit with a Compact Nuclear Power Plant
AuthorsO.A. Gubeladze1, A.R. Gubeladze2
Address

Don State Technical University, Gagarin square 1, Rostov-on-Don, Russia 344000

1ORCID iD: 0000-0001-6018-4989

WoS Researcher ID: F-6921-2017

e-mail: buba26021966@yandex.ru

2ORCID iD: 0000-0002-6966-6391

WoS Researcher ID: F-7215-2017

e-mail: buba26021966@yandex.ru

AbstractDuring the first twenty years of the ХХI century a number of a different nature armed conflicts have occurred. In some of them states with nuclear-missile take part. The article researches one of the phases of emergency situation growth driven by fire generated conventional weapon on the mobile launch platform with solid-propellant ballistic missile. The simulation of the thermal effect on air frame and transporter-launcher container is performed, the result calculation valuation and experiment are carried out
Keywordsballistic missile, launcher, transport and launch container, solid rocket fuel, fire, heat flux, temperature field
LanguageRussian
References
  1. Zaytsev M.S. Sravnitel’nyianaliz voennykh doktrin Indii i Pakistana [Comparative Analysis of Military Doctrines of Indiaand Pakistan]. Sravnitelnaja politika [2018. No. 3, P. 14-25
  2. Hoodbhoy P., Mian Z. Nuclear battles in South Asia // URL: http:// thebulletin.org/nuclear-battles-south-asia9415.
  3. Kristensen Hans M., Norris Robert S. North Korean Nuclear Capabilities. 2018. Bulletin of the Atomic Scientists. Vol.74. No.1. P. 41-51. URL: https://www. tandfonline.com/loi/rbul20
  4. Gubeladze O.A., Gubeladze A.R. Express-otsenka rezul'tatov nereglamentirovannykh destruktivnykh vozdeystviy na yaderno- i radiatsionnoopasnyy ob’ekt [Express Assessment of Results of Independent Destructive Impacts on Nuclear and Radiation-Hazardous Object]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2018. № 4(29). Р. 24-30 (in Russian).
  5. Mikhaylov V.N. Bezopasnost' yadernogo oruzhiya Rossii [Safety of Nuclear Weapon of Russia]. Moskva: Ministerstvo po atomnoy energii [Moscow: Ministry of Nuclear Energy]. 1998. 148 p.
    (in Russian).
  6. vner S.S. Маtematicheskaja teorija teplovogo regima n-slojnoj sredy pri izluchenii na granitse po zakonu N`jutona [Mathematical Theory of the Thermal Regime of an N-Layer Medium under Radiation at the Boundary according to Newton's Law]. Izvestija AN SSSR. Serija Geograficheskaja [News of the USSR Academy of Sciences. Geographical Series]. 1937. № 3. P. 419-430
    (in Russian).
  7. gan M.G. Nestatsionarnaja teploprovodnost v sloistyh sredah [Non-Stationary Thermal Conductivity in Layered Media]. Gurnal Tehnicheskoj Fiziki [Journal of Technical Physics]. 1957. Issue 82, № 6. P. 861-864 (in Russian).
  8. im E.I. Оb odnoj zadache teploobmena sistemy [On a Problem of Heat Exchange of a System of Bodies]. Prikladnaja mehanika [Applied Mechanics]. 1957. Volume 21. Issue 5. P. 624-633
    (in Russian).
  9. udinov V.A., Gnedenko V.V., Vorob'yev B.V. Меtody Bubnova-Galerkina i konetchnyh elementov v raschetah trehmernyh zadach teploprovodnosti dlja mnogoslojnyh konstruktsij [Bubnov-Galerkin and Finite Element Methods in Calculations of Three-Dimensional Heat Conduction Problems for Multilayer Structures]. Izvestija vuzov. Serija Energetika [Higher Education News. Series Energy]. 1992. № 5-6. P. 81-86.
  10. shi B.Ch., Denisov O.V., Gubeladze A.R. Pogarnaja bezopasnost yaderno- i radiatsionnoopasnyh ob’ektov [Fire Safety of Nuclear and Radiation-Hazardous Facilities]. Rostov-na-Donu: Izdatel'skiy tsentr DGTU [Rostov-on-Don. Don State Technical University Publishing Center]. 2014. 162 p.
    (in Russian).
  11. Beljaev N.N., Berlov A.V., Gubin A.I. Моdelirovanie protsessa vozgoranija tverdogo topliva v korpuse rakety [Simulation of Solid Fuel Combustion in the Rocket Body]. Visnik PDABA [Bulletin of the Pridneprovskaya State Academy of Construction and Architecture]. 2013. Issue 10(187). P. 28-35 (in Ukraine).
  12. Blinov V.I., Zagarskikh V.I., Mayorov M.A. Коntseptsija likvidatsii tverdotoplivnyh raket I utilizatsii smesevyh raketnyh topliv [The Concept of Elimination of Solid-Propellant Rockets and Disposal of Composite Rocket Propellants]. Rossija I mir: politicheskie realii I perspektivy: sbornik [Russia and the World: Political Realities and Prospects: Collector]. Moskva [Moscow]. 1995. № 5. P. 58-63 (in Russian).
  13. Burlaka N.M. Ekologo-gigienicheskoe soprovogdenie kak put obespechenija bezopasnosti vyvoda iz exspluatatsii I likvidatsii boevyh raketnyh komplexsov [Environmental and Hygienic Support as a Way to Ensure the Safety of Decommissioning and Elimination of Combat Missile Systems]. Sbornik trudov. Sektsija “Ingenernye problemy stabilnosti I konversii” Rossijskoj ingenernoj akademii [Collection of Works. Section "Engineering Problems of Stability and Conversion" of the Russian Engineering Academy]. Moskva [Moscow]. 2004. Issue 11. P. 34-41 (in Russian).

[14] Zharkov A.S., Mar'yash V.I., Utkin S.M. Sostoyanie, perspektivy i problemy utilizatsii raketnykh topliv [State, Prospects and Problems of Utilization of Rocket Fuels]. Problemny`e voprosy` metodologii utilizacii smesevy`x raketny`x topliv, otxodov i ostatkov zhidkix raketny`x topliv v e`lementax raketno-kosmicheskoj texniki: sb. trudov nauchno-prakticheskoj konferencii [Problem Questions of the Methodology of Mixed Rocket Fuel Utilization, Waste and Residues of Liquid Rocket Fuels in the Elements of Rocket and Space Technology: Collection of the scientific-practical conference]. Biysk : FNPTS «Altay», Rossiyskaya akademiya raketnykh i artilleriyskikh nauk [Biysk. Russian Academy of Rocket and Artillery Sciences. Federal research and production center «Altai»]. 2003. Р. 5-10 (in Russian).

[15] Sokolovskij M.I., Vajsman Ja.I. Теhnicheskie I ekologicheskie aspekty likvidatsii tverdotoplivnyh megkontinental`nyh ballisticheskich raket [Technical and Environmental Aspects of Eliminating Solid-Fuel Intercontinental Ballistic Missiles]. Perm. 2008. 635 p. (in Russian).

[16] Tsutsuran V.I., Petrukhin N.V., Gusev S. A. Voenno-tekhnicheskiy analiz sostoyaniya i perspektivy razvitiya raketnykh topliv [Military and Technical Analysis of a State and Prospect of Development of Rocket Fuels]. Moskva: МО RF [Moscow: МО RF]. 1999. 332 p. (in Russian).

[17] Energeticheskie kondensirovannye sistemy. Kratkiy entsiklopedicheskiy slovar' [The Power Condensed Systems. Short Encyclopedic Dictionary]. Moskva: Yanus K. [Moscow. Yanus K.]. 2000. 483 p. (in Russian)

Papers7 - 16
URL ArticleURL Article
 Open Article
Article NameCosmogenic Beryllium-7 in the Earth Atmosphere
AuthorsE.A. Buraeva*1, V.S. Malyshevsky*2, V.I. Ratushny**3
Address

*Southern Federal University, Sorge st., 5, Rostov-on-Don, Russia 344090

** Volgodonsk Engineering-Technical Institute – Branch of NRNU «MEPhI», Lenina street, 73/94, Volgodonsk, Russia 347360

1ORCID: 0000-0002-8474-3746

WoS ResearcherID:

e-mail: buraeva@sfedu.ru

2ORCID: 0000-0003-4538-5496

e-mail: vsmalyshtvsky@sfedu.ru

3ORCID: 0000-0002-5701-6279

e-mail: viratush@mail.ru

Abstract7Ве isotope is one of the few radionuclides, the content of which in the atmosphere does not depend on anthropogenic factors. Consequently, it can also be used as a monitor to identify sources of technogenic radionuclides entering the atmosphere such as emergency situations at radiation hazardous, chemically hazardous facilities. The article presents the results of monitoring the content of the 7Ве radioactive isotope in the surface atmosphere in the Rostov region for a ten-year period from 2001 to 2011, covering the second half of the 23rd and the first half of the 24th solar cycles. The data obtained confirm the inverse dependence of the average annual volumetric activity of 7Ве cosmogenic on solar activity. The observational data allowed for the first time to carry out a comprehensive study and to reveal correlations between the volumetric activity of 7Ве cosmogenic with the main meteorological parameters such as: air temperature, wind speed, precipitation, relative humidity and atmospheric pressure
Keywordsatmospheric radioactivity, surface air layer, cosmogenic radionuclides, 7Ве, activity, atmospheric aerosols
LanguageRussian
References

 

  1. Timofeeva Yu.M., Shulgina E.M. Rossiyskiye issledovaniya v oblasti atmosfernoy radiatsii v 2003-2006 gg. [Russian Studies in the Field of Atmospheric Radiation in 2003-2006]. Izvestiya RAN. Fizika atmosfery i okeana [Bulletin of the Russian Academy of Sciences. Physics of Atmosphere and Ocean]. 2009. T.45. No 2. P.193-208 (in Russian).
  2. Timofeeva, Yu.M., Shulgina E.M. Rossiyskiye issledovaniya v oblasti atmosfernoy radiatsii v 2007-2010 gg. [Russian Studies in the Field of Atmospheric Radiation in 2007-2010]. Izvestiya RAN. Fizika atmosfery i okeana [Bulletin of the Russian Academy of Sciences. Physics of Atmosphere and Ocean]. 2013. T.49. No 1. P.19-36 (in Russian).
  3. Carvalho Fernando P. Origins and Concentrations of 222Rn, 210Pb, 210Bi and 210Po in the Surface Air at Lisbon, Portugal, at the Atlantic Edge of the European Continental Landmass // V.29. № 15. P.1809-1819.
  4. Terzi L., Kalinowski M. World-Wide Seasonal Variation of 7Be Related to Large-Scale Atmospheric Circulation Dynamics // Journal of Environmental Radioactivity 2017. V.178-179.
    P.1-15.
  5. Buraeva E.A. [et al.] Soderzhaniye kosmogennogo 7Be v prizemnom sloye vozdukha umerennykh shirot [The Content of Cosmogenic 7Be in the Surface Layer of the Air of Temperate Latitudes]. Atomnaya energiya [Atomic Energy]. 2007. Vol.102, No 6. P. 370-374 (in Russian).
  6. Hisao Nagoi, Wataru Tada, Takayuki Kobayashi. Prodaction Rates of 7Be and 10Be in the Atmosphere // Nucl. Instr and Methods in Phys. Res. 2001. V.172B. P.796-801.
  7. Usoskin I.G., Kovaltsov G.A. Production of Cosmogenic 7Be Isotope in the Atmosphere: Full 3-D Modeling // J. Geophys. Res. 2008. V.113(D12). P.D12107(1-12).
  8. Bezuglov M.V. Fotoyadernyy kanal obrazovaniya kosmogennogo 7Ve v atmosfere Zemli [Photo-Nuclear Channel of Cosmogenic 7Ве Formation in the Earth Atmosphere]. Yadernaya fizika [Nuclear physics]. 2012. T.75. No 4. P.427-431 (in Russian).
  9. Bezuglov M.V., Malyshevsky V.S., Fomin G.V., Torgovkin A.V., Shramenko B.I., Malykhina T.V. Physical Review C. 2012. V. P024609 (1-12).
  10. Koch D.M., Jacob D.J., Graustein W.C. Vertical Transport of Tropospherie Aerosols as Indicated by 7Be and 210Pb in Chemical Tracer Model // J. Geophys. Res. 1996. V.101. P.18651-18661.
  11. Gerasopoulos E.A., P. Stohl, A. Zanis, C.S. Zerefos, C. Papastefanou, W. Ringer, L. Tobler,
    S. Hubener, H.W. Gaggeler, H.J. Kanter, L. Tositti, S. Sandrini Climatology of 7Be at Four High-Altitude Stations at the Alps and the Northern Apennines // Atmospheric Environment. 2001. 35. Р. 6347-6360.
  12. Azahra M., Camacho-Garcia A., Gonzalez-Gomez C., Lopez-Penalver J.J., Bardouni T. Seasonal 7Be Concentrations in Near-Surface Air of Granada (Spain) in the Period 1993-2001 // Applied Radiation and Isotopes. 2003. 59. Р. 159-164.
  13. Ioannidou A., Manolopoulou M., Papastefanou C. Temporal Changes of 7Be and 210Pb Concentrations in Surface Air at Temperate Latitudes (40оN) // Applied Radiation and Isotopes. 2005. № 63. Р. 277-284.
  14. Kulan, A. Distribution of 7Be in Surface Air of Europe / A. Kulan, A. Aldahan, G. Possnert, I. Vintersved // Atmospheric Environmen. 2006. № 40. Р. 3855-3868.
  15. Petrova T.B., Okhrimenko S.E., Vlasov V.K., Miklyaev P.S. Soderzhaniye berilliya-7 v atmosfernom vozdukhe g. Moskvy [The Content of Beryllium-7 in the Atmospheric Air of Moscow]. ANRI. 2007. No 2. P. 29-35 (in Russian).
  16. Buraeva E.A., Davydov M.G., Zorina L.V., Malyshevsky V.S., Stasov V.V. Soderzhaniye 7Ve v prizemnom sloye vozdukha g. Rostova-na-Donu [Content of 7Ве in the Surface Layer of Air in Rostov-on-Don]. ANRI. 2007. No 1. P. 63-67 (in Russian).
Papers17 - 29
URL ArticleURL Article
 Open Article
Article NameAnalysis of the Environmental Safety of Copper Ions Delivery to Surface Water Bodies from Nuclear Plants
AuthorsO.I. Gorskaya*1, I.A. Bublikova**2, V.M. Sapelnikov**3
Address

*Rostov nuclear power plant, Volgodonsk, Rostov region, Russia 347360

**Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”, Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1 ORCID iD: 0000-0003-3377-4654

e-mail: gorskaya-oi@vdnpp.rosenergoatom.ru

2 ORCID iD: 0000-0002-4857-5271

e-mail: IABublikova@mephi.ru

3 ORCID iD: 0000-0001-5792-5344

 e-mail: vsapelnikov@yandex.ru

AbstractTechnogenic pollution of environmental objects determines the relevance of work on the analysis of ensuring environmental safety requirements during the operation of nuclear power plants when copper ions enter water bodies with discharges from nuclear power plants. The paper analyzes the dynamics of both actual discharges of copper ions for Balakovo NPP, Novovoronezh NPP and Smolensk NPP (t / y), and in fractions of the normative permissible discharges for this heavy metal (%). The absence of violations of environmental safety requirements is shown. A more detailed analysis was carried out for the Rostov NPP. It is shown that the modernization of the turbine condenser pipe systems of the power unit No. 1 led to a sharp decrease in the flow of copper ions into the cooling pond from the nuclear power plant. Analysis of the toxicant content dynamics in the water of the cooling reservoir and the Tsimlyansk reservoir did not reveal the effect of the influx of copper ions from the cooling reservoir with filtering water on their concentration in the reservoir water.
Keywordsnuclear power plant, discharges, content of copper ions in water, cooling pond, Tsimlyansk reservoir, pollutant, correlation regression analysis
LanguageRussian
References
  1. Turetskaya I.V., Potaturkina-Nesterova N.I., Shrol O.Yu., Panteleev S.V., Nemova I.S. Otsenka zagryazneniya tyagely`mi metallami poverhnostny`h vod ozera v ra`one poligona [Assessment of Heavy Metal Pollution of Lake Surface Waters in the Area of the Landfill]. Fundamental`ny`e issledovaniya [Fundamental research]. 2012. № 3-3. P. 539-541 (in Russian).
  2. Report on Environmental Safety. Balakovo NPP, 2017. URL: http://www.rosenergoatom.ru/
    upload/iblock/fcc/fccbd124971999bfec951df2dd50c880.pdf (in Russian).
  3. Report on Environmental Safety. Novovoronezh NPP, 2017. URL: http://www.rosenergoatom.ru/
    upload/iblock/1b0/1b04fad014abe6ec24d67fb9a4a00753.pdf (in Russian).
  4. Report on Environmental Safety, 2017, Rostov NPP. URL: http://www.rosenergoatom.ru/
    upload/iblock/35f/35f7e17b9abf95e1ffeb140d7826f1d6.pdf (in Russian).
  5. Report on Environmental Safety, 2016, Rostov NPP. URL: http://www.rosenergoatom.ru/
    upload/iblock/034/034a3c3bfc22a08df1e0a3a2d1bbc922.pdf (in Russian).
  6. Report on Environmental Safety, 2016. Balakovo NPP. URL: http://www.rosenergoatom.ru/
    upload/iblock/32f/32f34a81a395fb935da468e14b6330da.pdf (in Russian).
  7. Report on Environmental Safety. Novovoronezh NPP, 2016 URL: http://www.rosenergoatom.ru/
    upload/iblock/1b2/1b2830f224e6b1393afe2d9ace500153.pdf (in Russian).
  8. Report on Environmental Safety, 2015. Novovoronezh NPP URL: http://www.rosenergoatom.ru/
    upload/iblock/c1a/c1a9cdff7eea78448132932b47c45efc.pdf (in Russian).
  9. Report on Environmental Safety, 2015, Balakovo NPP. URL: http://www.rosenergoatom.ru/
    upload/iblock/130/130d431b5a375c4e240644ae3f6bd543.pdf (in Russian).
  10. Report on Environmental Safety, 2015, Rostov NPP. URL: http://www.rosenergoatom.ru/
    upload/iblock/179/17965cad094d29bb6b698501edd8fd7f.pdf (in Russian).
  11. Report on Environmental Safety, 2014, Novovoronezh NPP. URL: http://www.rosenergoatom.ru/
    upload/iblock/6b6/6b6eae7d3db0579849a860def016df56.pdf (in Russian).
  12. Report on Environmental Safety, 2014, Balakovo NPP. URL: http://www.rosenergoatom.ru/
    upload/iblock/1a7/1a7653fd65d183136e275eac114978b0.pdf (in Russian).
  13. Report on Environmental Safety, 2014, Rostov NPP. URL: http://www.rosenergoatom.ru/
    upload/iblock/aae/aae24da9ebb12c184ff566087e0d7dbb.pdf (in Russian).
  14. Report on Environmental Safety, 2013, Balakovo NPP. URL: http://www.rosenergoatom.ru/
    upload/iblock/0f6/0f662120a25d325a35411985a116f083.pdf (in Russian).
  15. Report on Environmental Safety, 2013, Novovoronezh NPP. URL: http://www.rosenergoatom.ru/
    upload/iblock/73e/73e3d344ea93c70143cce62a745eec69.pdf (in Russian).
  16. Report on Environmental Safety, 2013, Rostov NPP. URL:http://www.rosenergoatom.ru/
    upload/iblock/1ee/1eeb0081b3d5ca00e92eb866017b9e11.pdf (in Russian).
  17. Report on Environmental Safety, 2013г, Smolensk NPP. URL:http://www.rosenergoatom.ru/
    upload/iblock/fa1/fa19a336e4bfe74dcc19a5216525af23.pdf (in Russian).
  18. Report on Environmental Safety of Smolensk NPP, 2014. URL:http://www.rosenergoatom.ru/
    upload/iblock/6a7/6a7cb756d40fe10706ab053ae1bef079.pdf (in Russian).
  19. Report on Environmental Safety of Smolensk NPP, 2015 URL:http://www.rosenergoatom.ru/
    upload/iblock/084/08441b8d3d8ed614f8da3a803aeecb82.pdf (in Russian).
  20. Report on Environmental Safety of Smolensk NPP, 2016 URL:http://www.rosenergoatom.ru/
    upload/iblock/33d/33da56170eab28956b28eb5e54cf1833.pdf (in Russian).
  21. Report on Environmental Safety of Smolensk NPP, 2017 URL:http://www.rosenergoatom.ru/
    upload/iblock/4a6/4a66b91389b7c2bb59e042577c938139.pdf (in Russian).
  22. Order of the Ministry of Agriculture of the Russian Federation, December 13, 2016 N 552 (as amended on October 12, 2018, March 10, 2020). – GARANT System. URL : http://base.garant.ru
    /71586774/53f89421bbdaf741eb2d1ecc4ddb4c33/#ixzz6avV7SdG0 (in Russian).
  23. Ministry of Natural Resources and Ecology of the Rostov Region / Ecological Bulletin of the Don. – URL : https://xn--d1ahaoghbejbc5k.xn--p1ai/projects/19/ (in Russian).
Papers30 - 38
URL ArticleURL Article
 Open Article

Design, manufacturing and commissioning of nuclear industry equipment

Article NameGeology, Tectonics and Stratigraphy of the Construction Site of the New Bushehr NPP Units in the Islamic Republic of Iran as Part of Recent Geotechnical Studies
AuthorsV.Yu. Ulyanov
Address

Dnieper State Academy of Construction and Architecture, Chernyshevsky St., 24a, Dnepr, Ukraine, 49600
ORCID iD: 0000-0002-9028-3408

e-mail: vuluanov@mail.ru

AbstractSouthern Iran in the area of Zagros and the borders of the Arabian and Eurasian plates is a seismically active territory in which large industrial facilities are located, including Bushehr NPP. In this regard the relevance of studying modern geodynamics and geology of the region is understandable. The geological structure of the territory after engineering surveys of 1974-2001 no longer seemed questionable. However, after completion of engineering surveys for new NPP units in 2015, new views on some positions on seismotectonics, and later on the geology of the area, appeared. The article provides information about the geology, tectonics and stratigraphy of the region and the research area, including not covered earlier in domestic reporting materials and scientific articles, and also considered the possible reasons for the appearance of other interpretations regarding seismotectonics and geology of the area where the NPP site is located. A brief analysis of the research results, both previously completed and completed relatively recently, is presented. An additional argument is considered in favor of the presence of fault zones within the Bushehr anticline proposed by Iranian researchers. In particular, the Khark-Mish fault supposed by them may be part of the buried ancient anticlinal fold before the position of its axis changes in the modern period as a result of neotectonic processes common to the region as a whole. The geology and tectonics of the Bushehr anticline are compared with similar structures on Fr. Hark and the nearest islands. Updated information on the stratigraphy of individual geological formations of the region and the research area is also provided. In spite of the reasoned justification of various positions on the geology and tectonics of the region, it seems necessary to conduct a number of additional special direct and indirect studies aimed at ensuring the safety of the Bushehr NPPs under construction and operating
KeywordsIslamic Republic of Iran, Bushehr NPP, Bushehr anticline, tectonic faults, active faults, seismicity, geological formation, geological formation, stratigraphy, paleontology
LanguageRussian
References
  1. Pendin V.V., Guseltsev A.S. Organizaciya upravleniya podzemnoj gidrosferoj na ob``ektax atomnoj e`nergetiki (na primere AE`S Busher) [Organization of Management of the Underground Hydrosphere at Nuclear Power Facilities (for example, Bushehr NPP)]. Inzhenernaya geologiya [Engineering Geology]. Moskva, noyabr` [Moscow, November] 2006. No 4. P. 21-32 (in Russian).
  2. Bachmanov D.M. Vozrastnaya zonal`nost` gruboj molassy` vneshnego Zagrosa i migraciya novejshego orogenez [Age Zonality of Gross Molasses of the Outer Zagros and Migration of Recent Orogenesis]. Geotektonika [Geotectonics]. 2001. No 6. P. 90-94 (in Russian).
  3. Rogozhin E.A. Sejsmotektonicheskie osobennosti Axramskogo zemletryaseniya 24 sentyabrya
    1999 goda (Iran, Zagros) [Seismotectonic Features of the Akhram Earthquake on September 24, 1999 (Iran, Zagros)] Geotektonika [Geotectonics]. 2012. No 5. P. 63-74 (in Russian).
  4. Rebetskiy Yu.L., Lucc A.A., Tatevosyan R.E., Bykova V.V. Opredelenie predel`ny`x fokal`ny`x mexanizmov slaby`x zemletryasenij i sovremennaya geodinamika yuga Irana [Determination of the Limiting Focal Mechanisms of Weak Earthquakes and Modern Geodynamics of the South of Iran]. Geodinamika i tektonofizika [Geodynamics and Tectonophysics]. 2017. 8(4): 971-988. URL: https://doi.org/10.5800/GT-2017-8-4-0327 (in Russian).

[5]    Kopnichev Yu.F., Sokolova I.N. Kol`cevy`e struktury` sejsmichnosti v rajone Irana: vozmozhnaya podgotovka sil`ny`x zemletryasenij [Ring Structures of Seismicity in the Region of Iran: Possible Preparation of Strong Earthquakes]. Vestnik NYaCz RK [Bulletin of the NNC RK]. 2019. Issue 2. P. 106-113 (in Russian).

  1. Pirouz M., Simpson G., Bahroudi A., Azdari A. Neogene Sediments and Modern Depositional Environments of the Zagros Foreland Basin System / Geol. Mag. 2011. 148(5-6). P. 838-853. DOI:10.1017/S0016756811000392.
  2. Sahraeyan M., Bahrami M. Detrital Modes of the Aghajari Formation Sandstones and Their Geological Implications, Southwest of Iran / World Applied Sciences Journal 32(7): 1258-1267, 2014. DOI:10.5829/idosi.wasj.2014.32.07.2029.
  3. Shariahinia Z., Hajizhi M., Feizniya S., Alizay A.Kh., Levresse G. Issledovaniye migratsii uglevodorodov v shel'fovom basseyne Zagros (Iran) dlya izucheniya dinamiki flyuidov v karbonatnykh kollektorakh oligotsen-miotsenovogo vozrasta [Study of Hydrocarbon Migration in the Zagros shelf (Iran) for Studying Fluid Dynamics in Carbonate Reservoirs of the Oligocene-Miocene Age]. Geologiya i geofizika [Geology and Geophysics]. 2013. V. 54. No 1. P. 83-105
    (in Russian).
  4. Bahrami M. Lithofacies and Sedimentary Environments of Aghajari Formation in Dehsheikh Mountain, West of Shiraz, Iran // World Applied Sciences Journal. 6(4): 464-473, 2009.
  5. Bachmanov D.M., Trifonov V.G., Hessami Kh.T., Kozhurin A.I., Ivanovac T.P., Rogozhind E.A., Hademie M.C., Jamali F.H. Active Faults in the Zagros and Central Iran // Tectonophysics (2004). 380. P. 221-241.
  6. Makarevich V.N., Nekhaev A.A. Litologo-stratigraficheskiye osobennosti i paleogeograficheskiye usloviya sedimentatsii osadochnogo chekhla provintsii Dezful' (Iran) [Lithological-Stratigraphic Features and Paleogeographic Conditions of Sedimentation of the Sedimentary Cover of the Province of Desful (Iran)]. Neftyanaya geologiya. Teoriya i praktika [Petroleum Geology. Theory and Practice]. 2012. T.7., No 3. P. 1-9 (in Russian).
  7. Nematollah Jafarzadeh, Maryam Ravanbakhsh, Kambis Ahmadi Angali, Ahmad Zare Javid, Darioush, Ranjbar Vakil Abadi, Shirin Ardeshirzadeh. Evaluation of Drinking Water Quality Indices (Case Study: Bushehr Province, Iran) / Environmental Health Engineering and Management Journal 2017, 4(2). P. 73-79. doi 10.15171/EHEM.2017.11.
  8. A., Khodaei Kamal, Asadian Farhad, Nakhaei Mohamad, Sardar Ali, Moradi Abolfazl, Hatefi Rahele, Zamanzadeh Seyed Mohammad. Determination of Origin and Distribution of Saline Water in the Aquifer of Kharg Island, Iran / Arabian Journal of Geosciences (2015). V.8. P. 3129-3137. DOI:10.1007/s12517-014-1450-7
  9. Mehdi Zar´e, Seyed-Ahmad Hashemi, Roya Ebadi Sahar Amirnejad-Mojdehi, Roya Rahmani, and Ali Sardar. Tsunami Hazard in the Shorelines of Khark Island (Persian Gulf), Iran /Earthq Sci (2012) 25: 299-305. DOI:10.1007/s11589-012-0855-1.
  10. Mohammad-Reza Forudi Jahromi, Ali Solgi, Mohsen Pourkermani, Abdollah Saedi. Role of the Kazerun and Borazjan faults in emplacements Dashti Salt Dome, Boushehr / Journal of Applied Science and Agriculture, 9(4). April 2014. P. 1884-1892.
  11. Talebian M., Jackson J. Offset on the Main Recent Fault of NW Iran and Implications for the Late Cenozoic Tectonics of the Arabia – Eurasia collision Zone, Jurnal of Geophys. J. Int (2002). 150: 422-439.
  12. Vernant P., Nilforoushan F., Hatzfeld D., Abbassi M.R., Vigni C., Masson F., Nankali H.,
    Martinod F., Ashtiani A., Bayer R., Tavakoli F. Chery J. Present-Day Crustal Deformation and Plate Kinematics in the Middle East Constrained by GPS Measurements in Iran and Northern Oman. Journal of Geophys. J. Int (2004). 157: 381-398.
  13. Rogozhin E.A., Tatevosyan R.E. Sovremennaya praktika otsenki seysmicheskoy opasnosti ob"yektov yadernoy energetiki [Modern Practice of Assessing the Seismic Hazard of Nuclear Power Facilities]. Institut fiziki Zemli im. O.Yu. Shmidta RAN [Institute of Physics of the Earth O.Yu. Schmidt RAS]. URL: http://atomsro.ru/wp-content/uploads/file/0PORTAL/AtomStroyStandart-2017/k6/Rogojin.pdf, free (in Russian).
  14. Mehdi Yazdi, Ali Bahrami, Peyman Abbasi, Reza Sadeghi, Francisco J. Vega. Miocene Brachyuran Crustacea from Konar-Takhteh and Ahram Sections, Southwestern Iran / Boletín de la Sociedad GeolóGica Mexicana. 2013. Vol. 65, № 2. P. 225-233.
  15. Heidari A., Feldmann R.M., Moussavi-Harami R. Miocene Decapod Crustacean from the Guri Member of the Mishan Formation, Bandar-Abbas, Southern Iran: Bulletin of the Mizunami Fossil
    Museum. 2012. № 38. P. 1-7.
  16. Vega F.J., Gholamalian H., Hassani M-J., Sajadi S-H., Schaaf P. Miocene Crustacea from northern Bandar Abbas, South Iran: Neues Jahrbuch fuer Geologie und Palaontologie. 2012. 265(3), 221-234.
  17. Ulyanov V.Yu. Monitoring radona kak indikatora seysmotektonicheskikh sobytiy na ploshchadke AES «Busher-1» i prilegayushchey territorii provintsii Busher Islamskoy Respubliki Iran [Monitoring of Radon as an Indicator of Seismotectonic Events at the Bushehr-1 NPP Site and the Adjacent Territory of the Bushehr Province of the Islamic Republic of Iran]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. 2017. No. 4(25). P. 7-17 (in Russian).
  18. Sedin V.L., Ulyanov V.Yu. On the possibility of evaluating the tectonic fault activity at the Akkuyu Nuclear Power Plant by sample radon measurements during environmental impact assessment [Possibility of Evaluating the Tectonic Fault Activity at the Akkuyu Nuclear Power Plant by Sample Radon Measurements during Environmental Impact Assessment]. Vestnik MGSU. 2019. T.14. Issue 10. P. 1272-1279. DOI: 10.22227 / 1997-0935 (in Russian).
Papers39 - 52
URL ArticleURL Article
 Open Article
Article NameMetrological Standardization of High-Precision Electronic Tacheometers Using a Precision Laser Tracker
AuthorsT.M. Pimshina*1, D.M. Arseniev**2, I.Yu. Pimshin***3
Address

*Rostov State Transport University (RGUPS), Rostovskogo Strelkovogo Polka Narodnogo Opolcheniya Sq., 2, Rostov-on-Don, Russia 344038

**Don State Technical University, Socialisticheskaya st., 162, Rostov-on-Don, Russia 344022

*** LLC «NPF» «Engineering Geodesy», Rostov-on-Don, Russia

1ORCID iD: 0000-0002-3776-398X

WoS Researcher ID: ABB-8364-2020

e-mail: pimshina.tat@yandex.ru

2ORCID iD: 0000-0002-9336-8327

WoS Researcher ID: ABB-9307-2020

e-mail: dima81-07@mail.ru

3ORCID iD: 0000-0002-8267-3617

WoS Researcher ID: O-8809-2018

e-mail: ivan.pimschin@yandex.ru

AbstractThe article discusses the issues of increasing the accuracy of measurements which is especially important in the installation and operation of technological equipment. The paper presents a technique for studying the accuracy of determining the rectangular coordinates of the controlled points measured by an electronic tacheometer. It is proposed to use a precision laser tracker for metrological standardization of high-precision electronic tacheometers at short distances (up to 60 m). The results of practical testing of the proposed method of metrological standardization of a high-precision electronic tacheometer are presented
Keywordscoordinate measuring system; electronic tacheometer; laser tracker; instrumental measurement errors; increased accuracy; determination of rectangular coordinates of controlled points; corrections to the measurement results
LanguageRussian
References
  1. GOST 8.009-1984 Normiruyemyye metrologicheskiye kharakteristiki sredstv izmereniy [Standardized Metrological Characteristics of Measuring Instruments]. Moskva: Standartinform [Moscow: Standartinform]. 2006. 27 p. (in Russian).
  2. GOST R 51774-2001 Takheometry elektronnyye. Obshchiye tekhnicheskiye usloviya [Electronic Tacheometers. General Specifications]. Moskva : IPK izdatel'stvo standartov [Moscow: IPK Publishing House of Standards]. 2001. 12 p. (in Russian).
  3. Gubeladze A.R., Naumenko G.A., Litvinova L.F., Gairabekov I.G., Pimshin I.Yu. Metodika etalonirovaniya elektronnykh dal'nomerov i takheometrov [Method of Standardization of Electronic Rangefinders and Tacheometers]. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Tekhnicheskiye nauki [News Of Higher Educational Institutions. North Caucasian Region. Technical Science]. Spetsial'nyy vypusk [Special issue]. P. 113-116 (in Russian).
  4. Pimshin I.Yu., Pimshina T.M. Issledovaniye zavisimosti pogreshnostey vzyatiya otschetov geodezicheskimi elektronnymi priborami ot rasstoyaniya mezhdu priborom i vizirnoy tsel'yu [Investigation of the Dependence of the Sampling Errors by Geodetic Electronic Devices on the Distance between the Device and the Sighting Target]. Sbornik nauchnykh trudov mezhdunarodnoy nauchno-prakticheskoy konferentsii «Transport: nauka, obrazovaniye, proizvodstvo» (TRANSPORT-2016) [Collection of Scientific Papers of the International Scientific-Practical Conference "Transport: Science, Education, Production" (TRANSPORT-2016)]. 12-15 aprelya 2016 g. Rostov-na-Donu: FGBOU VO RGUPS [April 12-15, 2016. Rostov-on-Don: FGBOU VO RGUPS]. 2016. P. 101-103 (in Russian).
  5. Pimshina T.M., Pimshin I.Yu., Zabarin A.A. Issledovaniye vliyaniya tsiklicheskikh oshibok svetodal'nomerov na izmereniya elektronnykh takheometrov [Investigation of the Influence of Cyclic Errors of Light Rangefinders on the Measurements of Electronic Tacheometers]. Sbornik nauchnykh trudov konferentsii «Aktual'nyye problemy i perspektivy razvitiya transporta, promyshlennosti i ekonomiki Rossii» (TRANSPROMEK-2018) [Collection of Scientific Papers of the Conference "Actual Problems and Prospects for the Development of Transport, Industry and Economy of Russia" (TRANSPROMEK-2018)]. 01-02 marta
    2018 g. Rostov-na-Donu: FGBOU VO RGUPS [March 01-02, 2018. Rostov-on-Don: FGBOU VO RGUPS]. 2018. P. 162-165 (in Russian).
  6. Tkachev K.N. azernaya koordinatno-izmeritel'naya sistema FARO Laser Tracker [Laser Coordinate-Measuring System FARO Laser Tracker]. Kontrol'. Diagnostika [Control. Diagnostics]. 2006. No.12. P. 59-61 (in Russian).
  7. Grishanov V.N., Oinonen A.A. Sovremennyye lazernyye izmeritel'nyye sistemy V proizvodstvennom tsikle kosmicheskoy tekhniki [Modern laser measuring systems In the production cycle of space technology]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta [Bulletin of the Samara State Aerospace University]. 2012. No.1(32). P. 24-35 (in Russian).
  8. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Handbook of Mathematics for Scientists and Engineers]. Moskva: Nauka [Moscow: Science]. 1978. 831 p. (in Russian).
Papers53 - 59
URL ArticleURL Article
 Open Article
Article NameA Variant of Application of Removable Lever for Turning Ellipsoid Bottoms of NPP Hull Equipment
AuthorsP.D. Kravchenko*1, Y.P. Kosogova*2, M.A. Gashneva**3, A.F. Kovalev***4
Address

*Volgodonsk Engineering Technical Institute, the Branch of the National Research Nuclear University «MEPhI», Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

**branch of JSC AEM-technologies «Atommash» in Volgodonsk, Volgodonsk, Rostov region, Russia 347388

***АО «Volgoenergoremont», Zhukovsky highway, 38, Volgodonsk, Rostov region, Russia 347388

1e-mail: krapa21@yandex.ru

ORCID iD: 0000-0003-3437-9998
WoS Researcher ID: G-5279-2017

2e-mail: ypkosogova@mephi.ru

ORCID iD: 0000-0003-3952-7814

WoS ResearcherID: Y-4338-2018

3e-mail: marinagashneva82@mail.ru

4e-mail: kovalevaea12@mail.ru

AbstractThe paper present the calculation of the strength and rigidity of the removable gripper for moving and turning ellipsoid bottoms of hull equipment. The proposed design solution will reduce the labor and material consumption of technological equipment and eliminate the need for welded load-handling and installation elements
Keywordsremovable hoisting device, tilting and displacement, the calculation of the strength, grip thickness
LanguageRussian
References
  1. B.Z., Yurchenko V., Kostylev V.I., Morozov А.М., Varovin A.Y., Rogozkin S.V., Nikitin А.А. Radiation Embrittlement of Support Structure Materials for WWER RPVS // Journal Of Nuclear Materials. Elsevier Science Publishing Company, Inc. 2018. Vol. 508. P. 123-138.
  2. Protasov A.V., Sivak B.A. Modern Development Tendencies of Ladle Vacuum Treatment. Tjazheloe mashinostroenie [Heavy Engineering]. 2019. № 5-6. Р. 60-63. (in Russian).
  3. Abuzov A.V., Abuzov Ya.A. Avtomatizatsiya upravleniya pod"yemno-transportnymi mekhanizmami pri likvidatsii posledstviy chrezvychaynykh situatsiy [Automation of Control of Lifting and Transport Mechanisms in Emergency Response]. Inženernyj vestnik Dona [Don Engineering News]. 2019. №7. URL: ivdon.ru/ru/magazine/archive/n7y2019/6104 (in Russian).
  4. Kravchenko P. D., Fedorenko D.N., Kosogova Y.P. Variant konstruktivnogo ispolneniya ustroystva tochnogo pozitsionirovaniya zakhvata dlya pod"yema upavshikh kasset v reaktore tipa VVER [Design Version of The Device, Exact Positioning of the Gripper for Lifting the Fallen Cassettes in the Reactor of WWER Type]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. 2019. №1(30). P. 101-105 (in Russian).
  5. Cov'yanov A.A., Kokorev YU.N., Hodakov D.V., Praliev D.A. Osobennosti termicheskoy obrabotki svarnykh soyedineniy krupnogabaritnykh agregatov pri montazhe AES [Features of Heat Treatment of Welded Joints of Large-Sized Units during NPP Installation]. Svarochnoe proizvodstvo [Welding Production]. 2014. №11. P. 47-52 (in Russian).
  6. Borincev A.B., Fedosov V.G. Vliyaniye tekhnologii izgotovleniya patrubkov kryshki reaktora tipa VVEP-1000 na napryazhenno-deformirovannoye sostoyaniye konstruktsii pri ekspluatatsii  [Influence of Manufacturing Technology for WWER-1000 Reactor Cover Pipes on the Stress-Strain State of the Structure during Operation]. Tyazheloe mashinostroenie [Heavy Engineering]. 2009. №1. P. 2-5 (in Russian).
  7. Holopov A.A., Dudkevich K.A., Pergamenshchik B.K. Transportirovka i montazh ukrupnenykh elementov AES [Transportation and Installation of the Integrated NPP Components]. Vestnik MGSU [MGSU Bulletin]. 2010. №4-2. P. 266-274 (in Russian).
  8. Kravchenko P.D., Kosogova Yu.P., Godunov S.F., Antonova T.V., Leonov V.A. Raschetnoye obosnovaniye sposoba primeneniya s"yemnykh gruzozakhvatnykh ustroystv pri peremeshchenii ellipsoidnykh dnishch korpusnogo oborudovaniya AES [Calculation Justification of the Method of Using Removable Load-Lifting Devices when Moving Ellipsoid Bottoms of Nuclear Power Plant Hull Equipment]. Inženernyj vestnik Dona [Don Engineering News]. 2020. №1. URL: http://ivdon.ru/uploads/article/pdf/IVD_15_1_Kravchenko.pdf_37ffaf2207.pdf (in Russian).
  9. Pisarenko G.S., Yakovlev A.P., Matveev V.V. Spravochnik po soprotivleniyu materialov [Reference Book on the Resistance of Materials]. Kiev: Naukova dumka. 1988. 736 p. (in Russian).
Papers60 - 67
URL ArticleURL Article
 Open Article

Operation of nuclear industry facilities

Article NameMolten Salt Reactors with Thermal and Fast Spectrum for Minor Actinides Transmutation
AuthorsO. Ashraf*,**1, G.V. Tikhomirov*2
Address

* Institute of Nuclear Physics and Engineering, National Research Nuclear University MEPhI, Moscow, Russia

** Department of Physics, Faculty of Education, Ain Shams University, Cairo, Egypt

ORCID iD: 0000-0002-9442-102X

WoS Researcher ID: V-1340-2018

email: osama.ashraf@edu.asu.edu.eg

ORCID iD: 0000-0002-5332-7272

WoS Researcher ID: B-7860-2013

email: gvtikhomirov@mephi.ru

 

AbstractLong-lived minor actinides (MA) like, Neptunium, Americium, and Curium are the major burden of nuclear power. Long-lived MAs have not yet been burned as nuclear fuel. Therefore, the transmutation of long-lived MAs is introduced as an alternative to direct final disposal. In current work, we compare the performance of MA transmutation in a critical Single-fluid Double-zone Thorium-based Molten Salt Reactor (SD-TMSR) and a Small Molten Salt Fast Reactor (SMSFR). We study the dynamic of Keff and core reactivity with different MA loads, shift of the neutron spectrum, time evolution of MA and basic nuclide inventory, as well as the transmutation coefficient (TC). The TC of long-lived MA is calculated using the Monte Carlo code SERPENT-2. The total neutron flux in SD-TMSR and SMSFR can reach 4.1x1014 and 1.8x1015 n/cm2s, respectively. The results show that SD-TMSR consumes about 50% of the generated Pu isotopes in the fuel salt, however, SMSFR consumes about 86.5% of the generated Pu isotopes. During burnup, we apply online reprocessing and refueling, so the core remains critical, and the total mass of fuel in the core and in the blanket is practically constant. The results show that both reactors efficiently transmute 237Np, 241Am, 243Am and 243Cm, while SMSFR has a higher TC than SD-TMSR. TC of total MA reaches 54.84% and 87.97% in SD-TMSR and SMSFR, respectively
Keywordsmolten salt reactor, transmutation, on-line-reprocessing, minor actinides, SERPENT, code Monte-Carlo, transmutation coefficient
LanguageRussian
References
  1. Liu B., Jia R., Han R., Lyu X., Han J., Li W. Minor Actinide Transmutation Characteristics in AP1000 // Annals of Nuclear Energy. 2018. Vol. 115. P. 116-125.
  2. Ramirez J.R., Enriquez P., Castillo R., Alonso G. MOX Fuel Use in a BWR with Extended Power Up-Rate // Annals of Nuclear Energy. 2012. Vol. 50. P. 63-70.
  3. Liu, B., Hu, W., Wang, K., Huang, L., Ouyang, X., Tu, J., Zhu, Y. Transmutation of MA in the High Flux Thermal Reactor // Journal of Nuclear Materials. 2013. Vol. 437. P. 95-101.
  4. Salvatores, M., Slessarev, I., Uematsu, M. A Global Physics Approach to Transmutation of Radioactive Nuclei // Nuclear Science and Engineering. 1994. Vol. 116. P. 1-18.
  5. DoE, U.S. A Technology Roadmap for Generation IV Nuclear Energy Systems. 2002. URL: http://gif. inel. gov/roadmap/pdfs/gen_iv_roadmap. pdf.
  6. Leppänen, J., Pusa, M., Viitanen, T., Valtavirta, V., Kaltiaisenaho, T. The Serpent Monte Carlo code: Status, development and applications in 2013 // Annals of Nuclear Energy. 2014. Vol. 82.
    P. 142-150.
  7. Li, G.C., Cong, P., Yu, C.G., Zou, Y., Sun, J.Y., Chen, J.G., Xu, H.J. Optimization of Th-U Fuel Breeding Based on a Single-Fluid Double-Zone Thorium Molten Salt Reactor // Progress in Nuclear Energy. 2018. Vol. 108. P. 144-151.
  8. Robertson, R.C. CONCEPTUAL DESIGN STUDY OF A SINGLE-FLUID MOLTEN-SALT BREEDER REACTOR. (No. ORNL-4541). comp.; Oak Ridge National Lab., Tenn. 1971.
  9. Nuttin, A., Heuer, D., Billebaud, A., Brissot, R., Le Brun, C., Liatard, E., Loiseaux, J.M., Mathieu, L., Meplan, O., Merle-Lucotte, E., Nifenecker, H. Potential of Thorium Molten Salt Reactorsdetailed Calculations and Concept Evolution with a View to Large Scale Energy Production // Progress in Nuclear Energy. 2005. Vol. 46. P. 77-99.
  10. Mukaiyama, T., Yoshida, H., Ogawa, T. Minor Actinide Transmutation in Fission Reactors and Fuel Cycle Considerations. «Use of Fast Reactors for Actiniae Transmutation. Proceedings of a Specialists Meeting held in Obninsk, Russian Federation, 22-24 September 1992». Vienna. 1993.
  11. Ashraf, O., Rykhlevskii, A., Tikhomirov, G.V., Huff, K.D. Whole Core Analysis of the Single-Fluid Double-Zone Thorium Molten Salt Reactor (SD-TMSR) // Annals of Nuclear Energy. 2020. Vol. 137. P. 107115.
  12. Yu, C., Li, X., Cai, X., Zou, C., Ma, Y., Han, J., Chen, J. Analysis of Minor Actinides Transmutation for a Molten Salt Fast Reactor // Annals of Nuclear Energy. 2015. Vol. 85. P. 597-604.
  13. Ashraf, O., Rykhlevskii, A., Tikhomirov, G.V., Huff, K.D. Strategies for Thorium Fuel Cycle Transition in the SD-TMSR // Annals of Nuclear Energy. 2020. Vol. 148. P. 107656.
Papers68 - 81
URL ArticleURL Article
 Open Article
Article NameThe Identification of Pre-Failure Conditions of Oil Coolers of NPP MCP by Operating Parameters
AuthorsV.V. Krivin1, V.Ya. Shpicer2, V.A. Tolstov3, I.O. Ishigov4
Address

 

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”,

Lenina street, 73/94, Volgodonsk, Russia 347360

1ORCID iD: 0000-0003-0903-0786

WoS Researcher ID: E-2267-2018

e-mail: vvkrivin@mephi.ru

2ORCID iD: 0000-0002-5051-5091

e-mail: shpitser@mephi.ru

3ORCID iD: 0000-0001-7144-5195

WoS ResearcherID: F-1032-2017

e-mail: v-tolstov-2017@mail.ru

4ORCID iD: 0000-0002-5829-6989

WoS Researcher ID: E-2448-2018

e-mail: ioishigov@mephi.ru

 

AbstractThe article deals with the results of empirical modeling of the oil system of the main circulation pumps of a nuclear power plant, designed for oil supply to support bearings and their cooling. The empirical model extends the industrial monitoring platform with a sliding linear predictor to maintain the operational safety and operability of the MCP. The initial data for the predictor are the controlled parameters of the MCP
Keywordsmonitoring, forecasting, NPP safety, main circulation pump, heat exchanger, digital signal processing, nonparametric statistics, regulatory limits, Sokolov-Singer indicator, indicator of thermal efficiency
LanguageRussian
References
  1. Slavutskiy L.A. Osnovy` registracii danny`x i planirovaniya e`ksperimenta [The Basis of Data Registration and Experiment Planning]. Cheboksary: Izdatel'stvo CHGU [Cheboksary: Publishing house of ChGU]. 2006. 200 p. (in Russian).
  2. Fomin Ya.A. Teoriya vy`brosov sluchajny`x processov [The Theory of Random Process Outliers]. Moskva: Svyaz`. [Moscow: Communication]. 1980. 216 p. (in Russian).
  3. Coelho L.P., Richart V. Postroenie sistem mashinnogo obucheniya na yazy`ke Python [The Building of Machine Learning Systems in Python Language]. Moskva: DMK Press [Moscow: DMK Press]. 2016. 302 p. (in Russian).
  4. Flach P. Mashinnoe obuchenie. Nauka i iskusstvo postroeniya algoritmov, kotory`e izvlekayut znaniya iz danny`x [The Machine Learning. The Science and Art of Building Algorithms that Extract Knowledge from Data]. Moskva: DMK Press [Moscow: DMK Press]. 2015. 400 p.
    (in Russian).
  5. Loskutov A.Yu., Mikhailov A.S. Osnovy` teorii slozhny`x system [The Basis of Comples System Theory]. Moscow-Izhevsk: Institut komp`yuterny`x issledovanij [The Institute of Computer Sciense]. 2007. 620 p. (in Russian).
  6. Sysoev Yu.S. Ispol`zovanie vremenny`x ryadov dlya formirovaniya promezhutkov odnotipnogo povedeniya parametrov ob``ekta pri razlichny`x sposobax prognozirovaniya [The Time Series Usage for the Formation of Intervals of Same Type Behavior of Object Parameters with Different Forecasting Methods]. Izmeritel`naya texnika [Measuring equipment]. 2018. №2. P. 8-12
    (in Russian).
  7. Orlov A.I. Prikladnaya statistika [Applied Statistics]. Moskva: Ekzamen [Moscow: Examination]. 2004. 656 p. (in Russian).
  8. Orlov Yu.N., Shagov D.O. Indikativny`e statistiki dlya nestacionarny`x vremenny`x ryadov [Indicative Statistics for Non-Stationary Time Series]. Preprinty IPM im. M.V. Keldysha [Keldysh Institute Preprints. M.V. Keldysh]. 2011. N53. 20 p. URL:  http://library.keldysh.ru/
    preprint.asp?id=2011-53 (in Russian).
  9. Zinger N.M. Gidravlicheskie i teplovy`e rezhimy` teplofikacionny`x sistem [Hydraulic and Thermal Modes of Heating Systems]. Moskva: Energoatomizdat [Moscow: Energoatomizdat]. 1986. 320 p. (in Russian).
  10. Sokolov E.Ya. Teplofikaciya i teplovy`e seti [Heating and Heat Networks]. Moskva: Izdatel'stvo MEI [Moscow: MPEI Publishing House]. 1999. 472 p. (in Russian).
  11. Uong X. Osnovny`e formuly` i danny`e po teploobmenu dlya inzhenerov [Basic Formulas and Data of Heat Transfer for Engineers]. Moskva: Atomizdat [Moscow: Atomizdat]. 1979. 216 p.
    (in Russian).
  12. Belkin A.P., Stepanov O.A. Diagnostika teploe`nergeticheskogo oborudovaniya [Diagnostics of Heat and Power Equipment]. Sankt-Peterburg: Lan`[St. Petersburg: Lan]. 2018. 240 p. URL: https://e.lanbook.com/book/105988 (in Russian).
Papers82 - 90
URL ArticleURL Article
 Open Article
Article NameAssessment of Stress-strain State of NPP Pipeline Metal Parts and Elements
AuthorsA.K. Adamenkov*1, I.N. Veselova**2
Address

*Rostov nuclear power plant, Volgodonsk, Rostov region, Russia 347360

**Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University «MEPhI»

Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1orcid id 0000-0001-7342-0231

WoS Researcher ID: O-1921-2018

е-mail: anri_61@ mail.ru

2orcid id 0000-0001-5867-5690

WoS Researcher ID: M-1893-2018

е-mail: INVeselova@mail.ru

AbstractAs part of the experimental assessment of the stress-strain state of pipeline elements at the NPP using devices based on the magnetoanisotropic method, the criteria for the parameters of the main mechanical stress difference characterizing the increased probability of erosion and corrosion wear were obtained. It is determined that the high level of the main mechanical stress difference values in combination with the results of processing measurements on the parameters of the first derivative and the gradient of the main mechanical stress difference, depending on the scanning step in the grid nodes, are additional criteria for detecting a potentially dangerous area of erosion and corrosion wear.
Keywordsmagnetoanisotropy, mechanical stress, gradient approach, derivative of stresses, local areas
LanguageRussian
References
  1. Adamenkov A.K., Veselova I.N., Shpicer V.Y. Ocenka razvitiya erozzionno-korozzionnogo iznosa s pomoshchiu metoda izmereniya magnitnoy anizotropii [Assessment of the Development of Erosion and Corrosion Wear Using the Method of Measuring Magnetic Anisotropy]. Globalnaya yadernaya bezopasnost [Global Nuclear Safety]. 2019. №1(30). Р. 113-119 (in Russian).
  2. Aleksandrov A.V. Soprotivlenie materialov [Strength of Materials]. Moskva: Vysshaya shkola [Moscow: Higher School]. 2003. P. 380-383 (in Russian).
  3. Konakova M.A., Volkov A.A., Yakovlev A.Y., Romancov C.V. Analiz vliyaniya razlichnikh faktorov na avariinie razrusheniya MG [Analysis of the Impact of Various Factors on the Emergency Destruction of MG]. Remont, vosstanovlenie, modernizaciya [Repair, Restoration, Modernization]. 2007. №6. P.7-12 (in Russian).
  4. Hosford W.F. Mechanical Behavior of Materials. New-York: Cambridge University Press, 2005. 342 p.
  5. Sosnin O.V., Nikitenko A.F., Gorev B.V. K obosnovaniu energeticheskogo varianta teorii polzuchesti I dlitelnoii prochnosti metallov [To Substantiate the Energy Version of the Theory of Creep and Long-Term Strength of Metals]. Prikladnaya mechanika i tehnicheskaya fizika [Applied Mechanics and Technical Physics]. 2010. Т.51, №4. P. 188-196 (in Russian).
  6. TPRG 1.1.3.09.1515-2018. Kontrol sostoyaniya osnovnogo metalla, svarnykh soedinenii i naplavlennykh poverkhnostei oborudovaniya, truboprovodov i drugikh elementov atomnykh stantsii s reaktornoi ustanovkoi VVER-1000 v proektnom sroke ekspluatatsii. Tipovaya programma / Vvedena v deistvie prikazom AO «Kontsern Rosenergoatom» ot 16.01.2019 №9/44-P // Razrabotana AO «Vserossiiskii nauchno-issledovatelskii institut po ekspluatatsii atomnykh elektrostantsii». Moskva. AO «Rossiiskii kontsern po proizvodstvu elektricheskoi i teplovoi energii na atomnykh stantsiyakh» [Monitoring the Condition of the Base Metal, Welded Joints and Weld Coated Surfaces of Equipment, Pipelines and Other Elements of Nuclear Power Plants with a WWER-1000 reactor in the Design Life: Standard Program / Enacted by order of Rosenergoatom Concern JSC dated 16.01.2019 No.9/44-P // Developed by JSC VNIIAES. Moscow: JSC Russian Concern for the Production of Electric and Thermal Energy at Nuclear Power Plants]. 2018
    (in Russian).
  7. RD EO 1.1.2.11.0571-2015 Normy dopuskaemykh tolshchin stenok elementov truboprovodov iz uglerodistykh stalei pri erozionno-korrozionnom iznose. Rukovodyashchii dokument / Vveden v deistvie prikazom AO «Kontsern Rosenergoatom» ot 06.08.2015 №9/876-P // Razrabotan AO «Vserossiiskii nauchno-issledovatelskii institut po ekspluatatsii atomnykh elektrostantsii». Moskva. AO «Rossiiskii kontsern po proizvodstvu elektricheskoi i teplovoi energii na atomnykh stantsiyakh» [Standards for Permissible Wall Thicknesses of Pipeline Elements Made of Carbon Steel in Case of Erosion and Corrosion Wear: a guideline / Enacted by order of Rosenergoatom Concern JSC dated 06.08.2015 No.9/876-P // Developed by JSC VNIIAES. Moscow: JSC Russian Concern for the Production of Electric and Thermal Energy at Nuclear Power Plants]. 2015 (in Russian).
  8. Zhukov S.V., Zhukov V.S., Kopitsa N.N. Patent RF № 2195636. Russian Federation, MPK G01L1/12 (2006.01). Sposob opredeleniia mekhanicheskikh napriazhenii i ustroistvo dlia ego osushchestvleniia [Method for Determining Mechanical Stresses and a Device for its Implementation]. № 2001106509/28 : zayav 05.03.2001: opubl. 27.12.2002/ (in Russian).
  9. Matvienko U.G. Razvitie modeleii i kriteriev razrusheniya v sovremennikh problemakh prochnosti i zhivuchesti [Development of Fracture Models and Criteria in Modern Problems of Strength and Survivability]. Vestnik nauchno-tekhnicheskogo razvitiya [Bulletin of Scientific and Technical Development]. 2014. №7(83). P.48-51 (in Russian).
  10. Novopashin M.D., Suknev S.V. Gradientnye kriterii predelnogo sostoianiia [Gradient Limit State Criteria]. Vestnik SamGU. Estestvennonauchnaia seriia []. 2007. № 4(54). P. 316-319 (in Russian).
  11. Adamenkov A.K., Veselova I.N., Malakhov I.V. Obespechenie kontrolya termomekhanicheskoy nagruzhennosti uzla privarki kollektora teplonositelya k patrubku Du1200 parogeneratorov PGV-1000 [Thermomechanical Stress Loading Monitoring of Welded Assembly of the Coolant Header of the Nozzle d1200 of Steam Generator PGV-1000]. Globalnaya yadernaya bezopasnost [Global nuclear safety]. 2015. № 4(17). Р. 84-89. (in Russian).
  12. Adamenkov A.K., Veselova I.N., Malakhov I.V. Ocenka effektivnosti ekspluatacii ustroistva dlya snyatiya napryajenii v kollektore parogeneratora PGV-1000 [Evaluation of the Efficiency of Operation for Device to Relieve Stresses in the Progenerator’s PGV-1000 Collector]. Atomnaya energiya [Atomic Energy]. 2017. № 2. P. 79-80 (in Russian).
Papers91 - 96
URL ArticleURL Article
 Open Article
Article NameTolerant Fuel for WWER-1200 Reactors with High Thermal Conductivity
AuthorsA.Z. Alhmoud1, V.B. Kruglov2, H.A. Tanash3
Address

National Research Nuclear University «MEPhI», Kashirskoye shosse, 31, Moscow, Russia 115409

1ORCID iD: 0000-0002-8213-1455

e-mail: ahmad_homoud@yahoo.com

2e-mail: vbkruglov@mephi.ru

3e-mail: tanash_hamza@yahoo.com

AbstractThe main factor of destruction of fuel rods in accidents with loss of coolant is associated with the vapor-zirconium reaction occurring between the fuel rod shell and the coolant (water). Improving the reliability of fuel cells can be obtained by modifying or replacing the fuel shell, materials that do not interact with the coolant during normal operation and in emergency situations. Increasing the reliability and economic characteristics of nuclear power plants is possible by replacing uranium dioxide with fissile compositions with a high content of fissile isotopes and with greater thermal conductivity. These two provisions form the concept of ATF (tolerant fuel). Variants of creation of tolerant fuel are considered., variants of modernization of shells and fissile compositions are studied for nuclear power plants with WWER reactors.
Keywordstolerant fuel, thermal conductivity, high temperature, uranium dioxide, zirconium, accidents with loss of coolant associated with water reaction
LanguageRussian
References
  1. Savchenko A. Tolerantnoe toplivo dlya reaktorov tipa VVE`R [Tolerant Fuel for WWER-Type Reactors]. 01.02.2016. URL: http://www.proatom.ru/modules.php?name=News&file
    =article&sid=6531&mode=thread&order=0&thold=0 (in Russia).
  2. Andrushechko S.A. [et al.]. AE`S s reaktorom tipa VVE`R-1000 [NPP with a WWER-1000 Type Reactor]. Moskva: Logos [Moscow: Logos], 2010. 604 p. (in Russia).
  3. Zhou W. Enhanced Thermal Conductivity Accident Tolerant Fuels for Improved Reactor Safety. A Comprehensive Review. Annals of Nuclear Energy. 2018. Т. 119. Р. 66-86.
  4. «Accident-tolerant fuel», Cranberry Township, Pennsylvania 16066. – URL: https://www.nrc.gov/docs/ML1826/ML18261A203.pdf.
  5. Jopek, H. and Strek, T. Optimization of the Effective Thermal Conductivity of a Composite. Convection and Conduction Heat Transfer, 2011, P. 197-214. – URL: https://books.google.jo/books?hl=en&lr=&id=XoqfDwAAQBAJ&oi=fnd&pg=PA197&dq=5.%09Jopek,+H.,+%26+Strek,+T.+(2011).+Optimization+of+the+effective+thermal+conductivity+of+a+composite.+Convection+and+Conduction+Heat+Transfer,+&ots=2TzHH2xYij&sig=SLuLap70nQI2Os8NzU5p6iY0XvM&redir_esc=y#v=onepage&q&f=false.
  6. Pietra, K., Wisniewski, Tomasz S. A Review of Models for Effective Thermal Conductivity of Composite Materials, Journal of Power Technologies, 95(1), 2015, P. 14-24. – URL: http://papers.itc.pw.edu.pl/index.php/JPT/article/viewFile/463/637.
  7. White, J. T., Nelson, A. T., Dunwoody J. T., Byler, D. D., Safarik, D. J., McClellan, K. J. Journal of Nuclear Materials, V. 464, September 2015, P. 275-280. – URL: http://dx.doi.org/10.1016/j.jnucmat.2015.04.031.
  8. Touloukian, Y. S., Powell, R. W., Ho, C. Y., Klemens, P. G. Thermophysical Properties of Matter. IFI/Plenum, New York, 1970. – URL : https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/
    reference/ReferencesPapers.aspx?ReferenceID=1168992.
  9. Alekseev S.V., Zaitsev V.A., Tolstoukhov S.S. Dispersionnoye yadernoye toplivo [Dispersive Nuclear Fuel]. Moskva : TEKHNOSFERA [Moscow: TECHNOSPHERE]. 2015. P 84-88
    (in Russia).
  10. Savchenko, A. M., Konovalov, Y. V., Laushkin, A. V., Yuferov, O. I. Low-Melting Zirconium Alloys. Letters on Materials, 2017, 7(3), Р. 229-233.
  11. Iwasaki, K., Matsui, Т., Yanai, K., Yuda, R., Arita, Y., Nagasaki, T., Yokoyama, N., Tokura, I., Une, K., Harada, K. Effect of Gd2 O3 Dispersion on the Thermal Conductivity of UO2. Journal of Nuclear Science and Technology, 2009, Р. 673-676.
  12. Samoilov O.B., Usynin G. B., Bakhmetyev A. M. Bezopasnost' yadernykh energeticheskikh ustanovok [Safety of Nuclear Power Installations]. Moskva : Energoatomizdat [Moscow: Energoatomizdat]. 1989. 278 p. (in Russia).
Papers97 - 102
URL ArticleURL Article
 Open Article

undefined

Article NameImplementation of Coaching Approach to Formation, Maintenance and Development of Safety Culture at the «Rosatom» State Corporation Enterprises
AuthorsV.A. Rudenko1, Yu.A. Evdoshkina2, I.S. Vasilenko3,
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”, Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1 ORCID iD: 0000-0002-6698-5469

WoS Researcher ID: B-7730-2016

e-mail: VARudenko@mephi.ru

2ORCID iD: 0000-0002-6704-0643

WoS Researcher ID: G-8379-2017

e-mail: YAEvdoshkina@mephi.ru

 3 ORCID iD: 0000-0002-2588-8283

e-mail: isv.trener@gmail.com

AbstractThe paper considers the possibility of using coaching as an innovative and effective technology for managerial interaction with personnel in the daily activities of the nuclear power plant leaders. The results of diagnostics of the development of management skills of managers at the Rostov nuclear power plant are presented. The obtained results of the study can be used as the basis for the strategy of forming and increasing leadership in matters of safety culture at the enterprises of the nuclear industry.
Keywordssafety culture, leader-leader model, type of management interaction, coaching
LanguageRussian
References
  1. Krause Thomas R. Motivatsiya liderstva v oblasti bezopasnosti na vsekh urovnyakh organizatsii: tri vazhnykh aspekta [Motivating Safety Leadership at All Levels of the Organization: Three Important Aspects]. HR-Portal, 2005. URL: https://hr-portal.ru/article/motivaciya-liderstva-v-oblasti-bezopasnosti-na-vseh-urovnyah-organizacii-tri-vazhnyh-aspekta (in Russian).
  2. Kouching kak instrument razvitiya menedzherov [Coaching as a tool for the development of managers]. Rekrutingovoye agentstvo «KAUS» [Recruiting agency «KAUS»]. URL: https://www.kaus-group.ru/knowledge/300-articles/category/motivation/material/438/ (in Russian).
  3. Seisekenova M.B., Kydyrbaeva E.O. Kouching kak novoye napravleniye v upravlenii organizatsiyey [Coaching as a New Direction in Organization Management]. Vestnik Kyrgyzsko-Rossiyskogo slavyanskogo universiteta [Bulletin of the Kyrgyz-Russian Slavic University]. 2018. No.3. P. 32-35. URL: https://e.lanbook.com/journal/issue/308193 (in Russian).
  4. Lipatova S.D. Kouching kak innovatsionnyy stil' upravleniya personalom [Coaching as an Innovative Style of Personnel Management]. Intellekt. Innovatsii. Investitsii [Intellect. Innovation. Investments]. 2018. No.10. P.28-33. URL: https://e.lanbook.com/journal/issue/310401 (in Russian).
  5. Kovalev V.I., Khatimlyanskaya K.A. Kouching kak innovatsionnyy stil' menedzhmenta personala v sovremennom globalizirovannom obshchestve [Coaching as an Innovative Style of Personnel Management in a Modern Globalized Society]. Naukovedeniye [Science Studies]. 2015. Vol.7. No.6(31). P.49 (in Russian).
  6. Bergal O.E. Kouching kak naiboleye effektivnaya tekhnologiya upravleniya personalom [Coaching as the Most Effective Technology for Personnel Management]. Vostochno-yevropeyskiy nauchnyy zhurnal [East European Scientific Journal]. 2015. T.4. No.3. P.37-40 (in Russian).
  7. Zinovieva E.A., Mikhailova O.N., Fedina E.N. Kouching kak sistemnyy metod upravleniya organizatsionnym povedeniyem v sovremennoy organizatsii [Coaching as a Systematic Method of Managing Organizational Behavior in a Modern Organization]. Kazanskiy sotsial'no-gumanitarnyy vestnik [Kazan Social and Humanitarian Bulletin]. 2016. No.1(18). P.12-16 (in Russian).
  8. Evdoshkina Yu.A. Teoretiko-metodologicheskiye problemy izucheniya yedinoy sotsiokul'turnoy matritsy kul'tury bezopasnosti personala i naseleniya zony raspolozheniya AES [Theoretical and Methodological Problems of Studying the Unified Socio-Cultural Matrix of the Safety Culture of Personnel and Population in the Area of the NPP]. Gumanitariy Yuga Rossii [Humanitarians of the South of Russia]. 2018. Vol.7. No.3. P.111-119 (in Russian).
  9. Rudenko V.A., Evdoshkina Yu.A., Zheleznyakova A.V., Zhuk A.V. Kul'tura bezopasnosti kak integral'nyy element v formirovanii professional'nykh kompetentsiy rabotnikov AES [Safety culture as an Integral Element in the Formation of Professional Competencies of NPP Workers]. Global'naya yadernaya bezopasnost [Global Nuclear Safety]. 2017. No.2(23). Р.104-110
    (in Russian).
  10. Lobkovskaya N.I., Evdoshkina Yu.A. Professional'noye tselepolaganiye kak sostavlyayushchaya kul'tury bezopasnosti budushchego spetsialista-atomshchika [Professional goal-setting as a component of the safety culture of a future nuclear specialist]. Elektronnyy resurs [Electronic resource]. Sovremennoye obrazovaniye [Modern education]. 2017. No.1. P.32-38. URL: http://e-notabene.ru/pp/article_22498.html (in Russian).
  11. Vasilenko I.N., Evdoshkina Yu.A., Rudenko V.A. Liderstvo v kul'ture bezopasnosti i voprosy yego formirovaniya v vuze, oriyentirovannom na podgotovku spetsialistov dlya atomnoy otrasli [Leadership in the safety culture and issues of its formation in a university focused on training specialists for the nuclear industry]. Global'naya yadernaya bezopasnost [Global Nuclear Safety]. 2019. No.2(32). Р.127-136 (in Russian).
  12. Rudenko V.A., Lobkovskaya N.I., Evdoshkina Yu.A. Situativno-lichnostnyye faktory organizatsionnoy i professional'noy priverzhennosti kul'ture bezopasnosti studentov-atomshchikov [Situative and Personal Factors of Organizational and Professional Commitment to Safety Culture of VETI NRNU "MEPhI" Nuclear Energy Department Students]. Global'naya yadernaya bezopasnost [Global nuclear safety]. 2018. No.3(28). P.87-97 (in Russian).
  13. Lobkovskaya N.I. Zheleznyakova A.V. Neborubov A.N. K voprosu ob innovatsionnom potentsiale studentov otraslevykh vuzov-partnerov GK «Rosatom» [Issue of the Innovative Potential of Students of Branch Universities-Partners of the State Corporation «Rosatom»]. Global'naya yadernaya bezopasnost [Global Nuclear Safety]. 2020. No.1(34). P.116-124 (in Russian).
  14. Rudenko V.A., Ozhereliev V.D., Evdoshkina Yu.A., Tsuverkalova O.F., Setrakov A.N. Sistemnyy podkhod k otsenke korrektiruyushchikh meropriyatiy dlya formirovaniya kul'tury bezopasnosti v atomnoy otrasli [A Systematic Approach to Evaluating Corrective Actions to Create Safety Culture in Nuclear Industry]. Global'naya yadernaya bezopasnost [Global Nuclear Safety]. 2020. No.3(36). P.85-94 (in Russian).
Papers103 - 112
URL ArticleURL Article
 Open Article
Article NameFeatures of High-Quality Mathematical Training in the Context of Online Education of Students Oriented to Work in the Nuclear Industry
AuthorsN.P. Vasilenko1, N.I. Chabanova2
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”, Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1ORCID iD: 0000-0001-7054-1302

WoS Researcher ID: G-4963-2017

e-mail: NPVasilenko@mephi.ru

2ORCID: 0000-0002-5738-6069

e-mail: nich@inbox.ru

AbstractDue to the COVID-19 coronavirus infection pandemic, the world is faced with the need for social isolation and a forced rapid transition to a “home office” and online learning. The Russian education system has almost completely switched to distance learning. Working in the new conditions turned the daily routine of both teachers and students who not only faced difficulties of various nature but also discovered new opportunities for professional growth. Traditionally, it is customary to discuss the disadvantages of distance education, but this paper considers the advantages and new opportunities of this form of education. This is especially important in the process of mathematical training of university students focused on work in the nuclear industry due to the specifics and importance of studying this subject and due to the fact that at present online training is widely implemented in the training of employees of nuclear power plants where digitalization and everything which is associated with remote access technologies, thanks to the pandemic, are in demand and irreplaceable.
Keywordsonline education, training of specialists for the nuclear industry, Zoom program, mathematical training of students
LanguageRussian
References

 

  1. Loktionov S. Novyye vozmozhnosti dlya obucheniya i razvitiya [New Opportunities for Learning and Development]. Mezhdunarodnyy opyt protivodeystviya krizisu [International Experience in Countering the Crisis]. RES. №7. 2020. P.27-30 (in Russian).
  2. Godovoy doklad MAGATE za 2019 god [IAEA Annual Report 2019]. Mezhdunarodnoye agentstvo po atomnoy energii [International Atomic Energy Agency]. URL: www.iaea.org (in Russian).
  3. MAGATE predlagayet tselyy ryad kursov distantsionnogo onlaynovogo obucheniya [The IAEA Offers a Variety of Online Distance Learning Courses]. URL: https://www.iaea.org/
    ru/uslugi/distancionnoe-onlaynovoe-obuchenie (in Russian).
  4. Khvalko A. Opyt reagirovaniya prikhodit na pomoshch' [Response Experience Comes to the Rescue]. Elektroenergetika. Novaya real'nost' [Electric Power Engineering. New Reality]. RES. №6. 2020. P. 20-23 (in Russian).
  5. Ekspertiza raschetnogo koda proyekta «Proryv» vpervyye provedena polnost'yu v tsifrovom vide s ispol'zovaniyem portala Rostekhnadzora [Examination of the Settlement Code of the Breakthrough Project Was Carried out for the First Time Fully in Digital Form Using the Rostechnadzor Portal]. URL: https://rosatom.ru /journalist/news/ekspertiza-raschetnogo-koda-proekta-proryv-vpervye-provedena-polnostyu-v-tsifrovom-vide-s-ispolzovan/ (in Russian).
  6. Struktura potrebnostey organizatsiy Goskorporatsii «Rosatom» v nabore vypusknikov po spetsial'nostyam (usrednennyye znacheniya po 2018-2027 gg.) [Structure of Needs of ROSATOM Organizations in the Recruitment of Graduates in Specialties (Averaged Values for 2018-2027)]. Sotrudnichestvo s vuzami [Cooperation with Universities]. URL: https://rosatom.ru/career/
    obrazovanie/sotrudnichestvo-s-vuzami/ (in Russian).
  7. Novyye formaty smeshannogo obucheniya [New Formats of Blended Learning]. EduTech. №21. 2020. URL: www.sberbank-university.ru (in Russian).
  8. Kakim budet inzhenernoye obrazovaniye budushchego. Obrazovatel'nyye tekhnologii budushchego: chto zhdet inzhenernyye i vychislitel'nyye nauki v blizhayshiye 10 let? Nesposobnost' k izmeneniyam: pochemu tol'ko s pomoshch'yu tekhnologiy nel'zya izmenit' obrazovaniye? Didaktika budushchego: kak tsifra izmenit prepodavaniye [What Will Be the Engineering Education of the Future. Educational Technologies of the Future: What Will Happen to Engineering and Computational Sciences in the Next 10 Years? Failure to Change: Why Can't Technology Change Education alone? Didactics of the Future: How Digital Will Change Teaching]. Onlayn-diskussii [Online Discussions]. Mezhdunarodnyy nauchno-metodicheskiy tsentr NIYAU MIFI [NRNU MEPhI International Scientific and Methodological Center]. URL: https://ismc.mephi.ru
    (in Russian).
  9. Effektivnyy perekhod v distantsionnoye obucheniye [Effective Transition to Distance Learning]. EduTech. Spetsvypusk [EduTech. Special issue]. 2020. URL: www.sberbank-university.ru
    (in Russian).
  10. Sovremennaya tsifrovaya obrazovatel'naya sreda v RF [Modern Digital Educational Environment in the Russian Federation]. URL: https://online.edu.ru /public/promo (in Russian).
  11. Obucheniye v novoy normal'nosti: vyzovy i otvety. Analiticheskiy otchot [Learning in the new normality: Challenges and Responses. Analytical Report]. Moskva: ANO DPO «Korporativnyĭ universitet Sberbanka» [Moscow: ANO DPO Sberbank Corporate University]. 2020. P.71
    (in Russian).
  12. Zhivoye obucheniye [Live Learning]. Telegram Analytics. URL: https://tgstat.ru/channel/@prolearning (in Russian).
  13. Vasilenko N.P., Chabanova N.I. Tekhnologiya elektronnogo obucheniya v matematicheskoy podgotovke studentov, oriyentirovannykh na rabotu v atomnoy otrasli [E-Learning Technology in the Mathematical Training of Students Oriented to Work in the Nuclear Industry]. Global'naya yadernaya bezopasnost' [Global nuclear safety]. 2020. №1(34). P.125-135 (in Russian).
  14. Vovlechennost' v obucheniye: razumnyye podkhody k motivatsii [Learning Engagement: Smart Approaches to Motivation]. EduTech. №21. 2020. URL: www.sberbank-university.ru
    (in Russian).
Papers113 - 122
URL ArticleURL Article
 Open Article