2021, 2 (39)

Nuclear, radiation and environmental safety

Article NameAssessment of Ammunition Group Explosiveness in Destructive Effects Conditions and Ways to Reduce It
AuthorsO.A. Gubeladze1, A.R. Gubeladze2
Address

Don State Technical University, Gagarin square 1, Rostov-on-Don, Russia, 344000

1ORCID iD: 0000-0001-6018-4989

WoS Researcher ID: F-6921-2017

e-mail: buba26021966@yandex.ru

2ORCID iD: 0000-0002-6966-6391

WoS Researcher ID: F-7215-2017

e-mail: buba26021966@yandex.ru

 

AbstractThe ammunition placement in a small area creates the group explosion danger as a result of destructive effects. It is impossible to ensure the group explosive safety of ammunition, by increased distance between them, due to the limited volume in which they are placed. This can be achieved by using protective screens against the high-speed strikers impact. Another direction is the search for optimal ammunition placement schemes in storage that minimize the number of fragments falling into ammunition. The neutrons external background influence during the group storage of nuclear ammunition is also considered.
Keywordsammunition, unregulated destructive effects, group explosion hazard, initiating action, self-sustaining chain reaction, neutron fluence.
LanguageRussian
References
  1. Ilyin V.V., Kozlov V.V., Sevryukov I.T. Razvitie teorii analiza avarijnoj situacii pri hranenii vzryvchatyh veshchestv: monografiy [Development of Theory of Analysis of Emergency Situation in Storage of Explosives: monograph]. Perm': Zapadno-Ural'skiy institut ekonomiki i prava [Perm: West Ural Institute of Economics and Law]. 2012. 186 p. (in Russian). 
  2. Gubeladze O.A., Gubeladze A.R. Express-otsenka rezul'tatov nereglamentirovannykh destruktivnykh vozdeystviy na yaderno- i radiatsionnoopasnyy ob’ekt [Express Assessment of Results of Independent Destructive Impacts on Nuclear and Radiation-Hazardous Object]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2018. №4 (29). Р. 24-30
    (in Russian).
  3. Gubeladze O.A., Gubeladze A.R. Otsenka posledstvij vozdeystviya kineticheskih udarnikov na vzryvoopasnyj ob’ekt s malogabaritnoj yadernoj energeticheskoj ustanovkoj [Assessment of the Influence Consequence of Kinetic Impactors at Explosive Object with Small-Scale Nuclear Power Facility]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2019. №3 (32). Р. 33-40 (in Russian).
  4. Gubeladze, O.A. Modelirovanie vysokoskorostnogo udara [Modeling of High-Speed Blow]. Globalnaia iadernaia bezopasnost [Global Nuclear Safety]. 2015. №1. Р. 61-69. (in Russian).
  5. Gubeladze O.A., Gubeladze A.R. Razrabotka passivnoj zashchity podvignogo agregata s yaderno- i radiatsionnoopasnym ob’ektom [Passive Protection Development of the Mobile Unit of Nuclear and Radiation Hazardous Objects]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2019. №1(30). Р. 7-15 (in Russian).
  6. Sakhabudinov R.V., Gubeladze O.A. Nauchno-metodicheskie osnovy obespecheniya fizicheskoy zashchity yadernoopasnykh ob’ektov. [Scientific and Methodical Bases of Ensuring Physical Protection of Nuclear-Dangerous Objects]. Rostov-na-Donu: OOO «Terra» [Rostov-on-Don: Limited liability company «Terra»]. 2006. 153 p. (in Russian).
  7. Krasnov A.A., Tkachev V.P. Zashchitnoe zagragdenie [Protective boom]. Patent 2211434 Rossiyskaya Federatsiya, MPK(51) F41H 5/04 (2000.01) F41H 11/08(2000.01) [Patent 2211434 Russian Federation, IPC (51) F41H 5/04 (2000.01) F41H 11/08 (2000.01)]. № 2002116356/02; zayavl. 17.06.02; opubl. 27.08.03, byul. № 24. 8 s. [No. 2002116356/02; declared 06.17.02; publ. 08.27.03, bul. No. 24. 8 p.]. 2003 (in Russian).
  8. Krasnov A.A., Tkachev V.P. Mobilnyj razvertyvaemyj zashchitnyj ekran [Mobile Expandable Protective Screen]. Patent 2229675 Rossiyskaya Federatsiya, MPK(51) F41H 5/14 (2000.01)]. № 2003106026/02 ; zayavl. 03.03.03 ; opubl. 27.05.04, byul. № 15. 13 s. [Patent 2229675 Russian Federation, IPC (51) F41H 5/14 (2000.01). No. 2003106026/02; declared 03.03.03; publ. 05/27/04, bul. No. 15. 13 p.]. 2004 (in Russian).
  9. Kubota N. Propellants and Explosives. Thermochemical Aspects of Combustion. New York:  John Wiley & Sons, 2015. 560 p.
  10. Levchenko E.M., Gubeladze O.A., Khmura V.M. Analiz processov v sisteme podkriticheskih sborok deljashchihsja materialov pri vneshnem nejtronnom obluchenii [Analysis of Processes in System of Sub-Critical Assemblies of Fissile Materials with External Neutron Irradiation]. Izvestiya vuzov. Severo-Kavkazskiy region. Tekhnicheskiye nauki. № S (spetsvypusk) [University News North-Caucasian Region. Technical science series. Application. Special Issue]. 2010. P. 131-134 (in Russian).
  11. Diev L.S., Ryazanov B.G., Murashov A.P. [and others] Kriticheskie parametry deljashchihsja materialov i jadernaja bezopasnost [Critical Parameters of Fissile Materials and Nuclear Safety]. Moskva: Energoatomizdat [Moscow. Energoatomizdat]. 1984. 176 p. (in Russian).
  12. Frolov V.V. Jaderno-fizicheskie metody kontrolja deljashchihsja veshchestv [Nuclear-Physical Methods of the Control of Fissile Substances]. Moskva: Atomizdat [Moscow. Atomizdat]. 1976. 189 p. (in Russian).
Papers7 - 14
URL ArticleURL Article
 Open Article
Article NamePossibility of Using Ballistic Missile Launchers in the Study of Shock-Compressed Substance Properties
AuthorsS.I. Gerasimov*,**,***1, V.I. Erofeev***2, I.V. Zanegin*3, V.A. Kikeev***4, A.P. Kalmykov*5, E.G. Kosyak**6, P.G. Kuznetsov**7, N.V. Lapichev*8
Address

 

*Russian Federal Nuclear Center – All-Russia Research Institute of Experimental Physics, 607188 Russia, Sarov, Nizhny Novgorod region, Mir Av., 37

**Sarov Physics and Technical Institute of NRNU «MEPHI», 607186 Russia, Nizhny Novgorod region

***Institute of Problems of Mechanical Engineering, 603024 Nizhny Novgorod Russia

E-mail: s.i.gerasimov@mail.ru

1ORCID iD: 0000-0002-6850-0816

WOS Researcher ID: L-2727-2016

e-mail: s.i.gerasimov@mail.ru

2ORCID iD: 0000-0002-6637-5564

e-mail: erf04@mts-nn.ru

3ORCID: 0000-0002-8377-7522

igzanegin@yandex.ru

4ORCID iD: 0000-0002-2375-0803

e-mail: vkikeev@mail.ru

5 ORCID iD: 0000-0002-9689-6838

akalm12@yandex.ru

6ORCID: 0000-0001-6291-2396

keg@sarfti.ru
7 ORCID: 0000-0003-2691-206X

kpg@sarfti.ru

8 ORCID: 0000-0002-3231-7251

lapich1001@yandex.ru

AbstractThe paper describes ballistic test site equipment used for studying the physical and mechanical properties of materials exposed to intense dynamic loads. To study the properties of shock-compressed substances, explosive shock wave generators based on powerful condensed explosives are used. The methods of dispersal of the used strikers in different throwing modes with different types of guns are briefly described. The methodological development in cannon experiments on light-gas guns is given, in which the conditions of safe acceleration of the strikers in the barrels of the guns and the loading parameters of the latter which provide the required collision speeds of the striker and the target are confirmed. Numerical and experimental results of testing the selected throwing modes are presented.
Keywordsshock-wave loading, explosive generator, ballistic installation, light-gas gun, muzzle exhaust.
LanguageRussian
References
  1. Batkov Yu.V., Borisenok V.A., Belsky V.M. Metody issledovaniya svoystv materialov pri intensivnykh dinamicheskikh nagruzkakh : monografiya [Methods of Studying the Properties of Materials Under Intense Dynamic Loads: monograph]. Pod red. M.V. Zhernokletova [Edited by M. V. Zhernokletov]. Sarov: FSUE RFNC-VNIIEF, 2005. 428 c. (in Russian).
  2. Nabatov S.S., Yakushev V.V. Installation for experiments with shock waves [Ustanovka dlya eksperimentov s udarnymi volnami]. Problemy prochnosti [Problems of Strength]. 1975. No.3. P.101-102 (in Russian).
  3. Mitchell, Nellis. Diagnosticheskaya sistema dlya dvukhstupenchatoy legkogazovoy pushki Livermorskoy natsional'noy laboratorii im. Lourensa [Diagnostic System for a Two-Stage Light-Gas Gun of the Livermore National Laboratory. Lawrence]. Pribory dlya nauchnykh issledovaniy [Devices for scientific research]. 1981. No.3. Р.14-29 (in Russian).
  4. Gerasimov S.I., Odzericho I.A., Gerasimova R.V., Salnikov A.V., Kalmykov A.P., Yanenko B.A. Bezopasnyye usloviya provedeniya issledovaniy s ballisticheskimi ustanovkami [Safe Conditions for Conducting Research with Ballistic Installations]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye [University News. Mechanical Engineering]. 2019. No9(714). P.105-114
    (in Russian).
  5. Sposob izmereniya vremeni proleta metayemym telom mernoy bazy i ustroystvo dlya yego osushchestvleniya, zayavitel' i patentoobladatel' FGUP RFYATS-VNIIEF [Patent for the Invention RU 2698531 C1 of the Russian Federation. A Method of Measuring the Time of Flight by a Throwing Body of Measuring Base and Device for its Implementation, the Applicant and Patent Holder of the FSUE RFNC-VNIIEF]. Gerasimov S. I., Zubankov A.V., Kazakov A.V., Nikolaev V. A., Shukshin E. V., publ. 28.08.2019. Application No. 2018132908 of 14.09.2018
    (in Russian).
  6. Patent na izobreteniye RU 2712371 C1. Registrator proleta model'yu zadannogo secheniya kontaktnogo tipa, zayavitel' i patentoobladatel' FGUP RFYATS-VNIIEF [Patent for the Invention RU 2712371 C1. The Registrar of the Span with a Model of a Given Section of the Contact Type, the Applicant and Patent Holder of the FSUE RFNC-VNIIEF]. Batarev S. V., Gerasimov S. I., Lysenkov V. E., publ. 28.01.2020. Application No. 2019108715 of 26.03.2019 (in Russian).
  7. Gerasimov S.I., Kikeev V.A., Kuzmin V.A., Totyshev K.V., Fomkin A.P., Gerasimova R.V. Tenevaya skhema s selektivnym diapazonom fotoregistratsii v aerodinamicheskikh ispytaniyakh [Shadow Scheme with Selective Range of Photoregistration in Aerodynamic Tests]. Nauchnaya vizualizatsiya [Scientific Visualization]. 2019. Vol.11. No.2. Р.1-10 (in Russian).
  8. Gerasimov S.I., Erofeev V.I., Krutik M.I., Totyshev K.V., Kosyak E.G., Kuznetsov P.G., Gerasimova R.V. Apparatnyy kompleks, realizuyushchiy skhemu odnovremennogo polucheniya izobrazheniya bystroprotekayushchego protsessa v otrazhennom i prokhodyashchem svete [Hardware Complex that Implements a Scheme for Simultaneously Obtaining Images of a Fast-Flowing Process in Reflected and Transmitted Light]. Pribory i tekhnika eksperimenta [Instruments and Techniques of Experiment]. 2020. No.5. Р.88-91 (in Russian).
  9. Gerasimov S.I., Trepalov N.A. Tenevoy fonovyy metod – opticheskiy metod issledovaniya udarnykh voln [Shadow Background Method - an Optical Method of Studying Shock Waves]. Zhurnal tekhnicheskoy fiziki [Journal of Technical Physics]. 2017. Vol.87. No.12. Р.1802-1807 (in Russian).
  10. Gerasimov S.I., Erofeev V.I., Kamchatny V.G., Odzericho I.A. Usloviye na skol'zyashchem kontakte v analize ustoychivosti dvizheniya stupeni na raketnom treke [Condition on the Sliding Contact in the Analysis of the Stability of the Movement of the Stage on the Rocket Track]. Problemy mashinostroyeniya i nadezhnosti mashin [Problems of Mechanical Engineering and Machine Reliability]. 2018. No.3. Р.21-27 (in Russian).
  11. Gerasimov S.I., Erofeev V.I., Kikeev V.A., Fomkin A.P. Razlichnyye mekhanizmy razrusheniya tel v giperzvukovom potoke, vyyavlennyye s pomoshch'yu opticheskoy i rentgenograficheskoy registratsii [Various Mechanisms of Destruction of Bodies in a Hypersonic Flow, Revealed by Optical and Radiographic Registration]. Nauchnaya vizualizatsiya [Scientific Visualization]. 2015. Vol.7. No.1. Р. 38-44 (in Russian).
  12. Gerasimov S.I., Zakharov D.V., Zubankov A.V., Kikeev V.A., Polienko G.V., Khoroshailo E.S. Rentgenografirovaniye na izmeritel'nykh kompleksakh [Radiography on Measuring Complexes]. Nauchnaya vizualizatsiya [Scientific Visualization]. 2018. Vol.10, No.2. Р.1-20 (in Russian).
Papers15 - 24
URL ArticleURL Article
 Open Article
Article NameSome Aspects of International Cooperation in Environmental Issues in Nigeria
AuthorsB.K. Orumo1, A.P. Elokhin2, A.I. Ksenofontov3
Address

 

National Research Nuclear University Moscow Engineering Physics Institute (NRNU MEPhI),
Kashirskoye shosse, 31, Moscow, Russia 115409

1ORCID iD: 0000-0001-6251-1736

ResearcherID: S-9359-2019

e-mail: orumokenoll@yahoo.com

2ORCID iD: 0000-0002-7682-8504

WoS Researcher ID: G-9573-2017

e-mail: elokhin@yandex.ru

3ORCID iD: 0000-0002-6864-9805

WoS Researcher ID: H-1833-2017

e-mail: AIKsenofontov@mephi.ru

AbstractThe paper discusses the issues of international cooperation on environmental issues in Nigeria: the role of international agreements in the field of environmental ecology; basic principles of international cooperation in the field of environmental protection; environmental education in Nigeria; principles of environmental project management; and a number of measures to reduce atmospheric pollution. The issues of coordination both between the state and between international organizations dealing with similar problems, as well as issues of mutually beneficial cooperation in the field of environmental ecology are considered in the research paper. The issues under consideration acquire particular relevance in connection with the discussion of the possibility of nuclear power plant building in Nigeria.
Keywordsecology of the environment, international cooperation, environmental education, international agreements, principles of environmental protection.
LanguageRussian
References

[1]    Nigeriya: ekonomicheskij rost [Nigeria: Economic Growth] / – URL: https://ru.theglobaleconomy.com/Nigeria/Economic_growth/ (in Russian).  
[2]    Orumo K.B. Ekologicheskie i social'no-ekonomicheskie aspekty vozmozhnogo razvitiya atomnoj energetiki v Federativnoj Respublike Nigeriya [Environmental and Social, Economic Aspects of the Possible Development of Nuclear Energy in the Federal Republic of Nigeria]/ K.B. Orumo, A.P. Elohin, A.I. Ksenofontov // Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. – 2019. – № 4(33). – P. 96-109 (in Russian).  
[3]    Orumo, K.B. Pravovoj i ekonomicheskij mekhanizmy ohrany okruzhayushchej sredy v federal'noj respublike Nigeriya [Legal and Economic Mechanisms for Environmental Protection in the Federal Republic of Nigeria] / K.B. Orumo, A.P. Elohin, A.I. Ksenofontov // Evrazijskij Soyuz Uchenyh (ESU) [ Eurasian Union of Scientists (EUS)]. – 2020. – № 6(75), Part. 7. – P. 13-27
(in Russian).
[4]    Hart Lawrence, Orupabo Sika. Applicable International Environmental Impact Assessment Laws for the Niger Delta Area of Nigeria. African Journal of Environmental Science and Technology. 2016. № 10(11). Р. 386-393 (in English).
[5]    Chuka Enuka. Challenges of International Environmental Cooperation. Global Journal of Human-Social Science (B) Geography, Geo-Sciences, Environmental Science & Disaster Management. 2018. Volume 18, Issue 3, Version 1.0. Р. 7-15. URL: https://globaljournals.org/
GJHSS_Volume18/2-Challenges-of-International.pdf (in English).
[6]    Aliyu Ahmed-Hameed. The Challenges of Implementing International Treaties in Third World Countries: The Case of Maritime and Environmental Treaties Implementation in Nigeria. Journal of Law, Policy and Globalization. 2016. Vol.50. Р.22-30 (in English).
[7]    Elohin, A.P. Osnovy ekologii i radiacionno-ekologicheskogo kontrolya okruzhayushchej sredy [Fundamentals of Ecology and Radiation-Ecological Monitoring of the Environment] / A.P. Elohin, A.I. Ksenofontov, I.V. Pyrkov // Moskva : NIYAU MIFI [Moscow:NRNU MEPhI], 2016. – 680 p. (in Russian).  
[8]    Andersen Inger, Dione Ousmane, Jarosewich-Holder Martha, Olivry Jean-Claude, Golitzen Katherin George. The Niger River Basin : A Vision for Sustainable Management. Water P-Notes. 2008. No. 16. World Bank, Washington, DC. © World Bank. https://openknowledge.
worldbank.org/handle/10986/11747 License: CC BY 3.0 IGO (in English).
[9]    Marisa Goulden, Roger Few. Climate Change, Water and Conflict in the Niger River Basin. International Alert. 2011. 70 р. URL: https://www.international-alert.org/sites/default/
files/ClimateChange_WaterConflictNigerRiver_EN_2011.pdf (in English).
[10]    Aniefiok E. Ite, Usenobong F. Ufot, Margaret U. Ite, Idongesit O. Isaac and Udo J. Ibok. Petroleum Industry in Nigeria: Environmental Issues, National Environmental Legislation and Implementation of International Environmental Law. American Journal of Environmental Protection. 2016; 4(1):21-37. doi: 10.12691/env-4-1-3 (in English).
[11]    Onyenekenwa Cyprian Eneh. Managing Nigeria’s Environment: The Unresolved Issues. Journal of Environmental Science and Technology. March 2011. 4(3). Р.250-263. DOI:10.3923/jest.2011.250.263 (in English).
[12]    Ite A.E., Ibok U.J., Ite, M.U., Petters S.W. Petroleum Exploration and Production: Past and Present Environmental Issues in the Nigeria’s Niger Delta. American Journal of Environmental Protection. 2013. №1. Р.78-90. DOI:10.12691/env-1-4-2 (in English).
[13]    Federal Republic of Nigeria. Ministry of Environment Great Green Wall for the Sahara and Sahel Initiative. National Strategic Action Plan. October 2012. URL: http://www.fao.org/
fileadmin/templates/great_green_wall/docs/NIGERIA-GGWSAP__FINAL_Oct_2012.pdf (in English).
[14]    Erhabor Igbinosa Norris. Actualizing the Goals of Environmental Education in Nigeria. Journal of Education and Practice. 2016. 2016. 7(8). Р.1-5 (in English).
[15]    Kongsak Thathong. A Spiritual Dimension and Environmental Education: Buddhism and Environmental Crisis. Procedia – Social and Behavioral Sciences. 2012. №46. Р.5063-5068 (in English).
[16]    Jackson Onome Robinson. Environmental Educationand Sustainable Development in Nigeria:Breaking the Missing Link. International Journal of Education and Research. 2013. Vol. 1 No. 5. Р.1-6 (in English).
[17]    Nigeria. Country Profil. EImplementation of Agenda 21: Review of Progress Made since the United Nations Conference on Environment and Development, 1992. URL: https://www.un.org/
esa/earthsummit/nigeriac.htm (in English).

 

Papers25 - 34
URL ArticleURL Article
 Open Article

Design, manufacturing and commissioning of nuclear industry equipment

Article NameAnalysis and Optimization of Three-Beam Traverse Structure Elements for Reactor Cavity Reinforced Concrete Block Installation
AuthorsS.A. Tomilin1, R.V. Pirozhkov2, E.A. Tsvelik3 E.V. Pinchuk4, S.F. Godunov5
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”, Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1ORCID iD: 0000-0001-8661-8386

Wos Researher ID: G-3465-2017

e-mail: SATomilin@mephi.ru

2ORCID iD: 0000-0002-1547-6568

WoS Researcher ID: AAD-3193-2020

e-mail: roman-3.14@yandex.ru

3ORCID iD: 0000-0001-9048-275X

WoS Researcher ID: G-3560-2018

e-mail: stvelik@mail.ru

4e-mail: pinchuk.ed@yandex.ru

5e-mail: SFGodunov@mephi.ru

AbstractIncreased demands are placed on the reliability and strength of structures used in the installation of equipment for nuclear power plants. At the same time, an excessive safety margin of the equipment used leads to an increase in its dimensions, weight and a significant rise in cost. The issue of reducing the metal consumption of structures while maintaining the required performance criteria for this equipment is very relevant. The paper presents a model for optimizing the design of a three-beam traverse with a carrying capacity of 100 tons for reactor cavity reinforced concrete block installation. A verification calculation is carried out and recommendations on the optimization of design parameters are proposed on its basis.
Keywordsstrength, stability, reliability, verification calculation, design optimization, installation, traverse, nuclear power plant design.
LanguageRussian
References
  1. SNiP II-23-81 Stal'nyye konstruktsii [SNiP II-23-81 Steel Structures]. Moskva: FGUP TSPP [Moscow: FSUE TsPP]. 2005. 90 p. (in Russian).
  2. Posobiye k SNiP II-23-81 Posobiye po raschotu i konstruirovaniyu svarnykh soyedineniy stal'nykh konstruktsiy [Manual to SNiP II-23-81 Manual on Calculation and Design of Welded Joints in Steel Structures]. Moskva: Stroyizdat [Moscow: Stroyizdat]. 1984. 18 p. (in Russian).
  3. Shokhrina N.V., Feofanov A.N., Grishina T.G. Osnovy metodiki obosnovaniya tekhnicheskikh kharakteristik izdeliya [Fundamentals of the Methodology for Substantiating the Technical Characteristics of the Product] Vestnik MGTU «STANKIN» [Bulletin of MSTU «STANKIN»]. 2015. No 4(35). P. 113-117 (in Russian).
  4. Kashkovsky V.V., I.I. Tikhiy Sistemnyy podkhod k opredeleniyu sostoyaniya tekhnicheskikh izdeliy po kharakteristikam nadozhnosti [Systematic Approach to Determining the State of Technical Products Based on Reliability Characteristics]. [Modern Technologies. System Analysis. Modeling]. 2016. No 4(52). P. 143-150 (in Russian).
  5. Dudchenko A.N., Tomilin S.A., Pinchuk M.E., Pinchuk E.V. The Optimization of Construction of Hexactinal Cross Arm for Bearing Framework Mounting of Support Reactor Carcass // In the World of Scientific Discoveries, Series B. 2014. Т. 2. № 2. P. 23-28 (in English).
  6. Dudchenko A.N., Tomilin S.A., Pinchuk M.E., Pinchuk E.V. Optimizatsiya konstruktsii shestiluchevoy traversy dlya montazha zakladnoy opory fermy opornoy korpusa reaktora [Optimization of the Design of the Six-Beam Traverse for the Installation of the Embedded Support of the Truss of the Reactor Support Vessel]. V mire nauchnykh otkrytiy [In the World of Scientific Discovery]. 2014. № 6-1(54). P. 586-598 (in Russian).
  7. Tomilin S.A., Pinchuk M.E., Pinchuk E.V., Godunov S.F. Analysis of Safety Characteristics and Optimization of Traverse Structural Elements for Installation of WSG-1000M Steam Generators Support // In the World of Scientific Discoveries, Series B. 2015. Т. 3. № 2. Р. 103-110
    (in English).
  8. Tomilin S.A., Pinchuk M.E., Pinchuk E.V., Godunov S.F. Analiz prochnostnykh kharakteristik i optimizatsiya elementov konstruktsii traversy dlya montazha opor parogeneratorov PGV-1000M [Analysis of Strength Characteristics and Optimization of Structural Elements of the Traverse for the Installation of Supports for PGV-1000M Steam Generators]. V mire nauchnykh otkrytiy [In the World of Scientific Discoveries]. 2014. № 12-1(60). P. 494-508 (in Russian).
  9. Dudchenko A.N., Tomilin S.A., Pinchuk M.E., Pinchuk E.V. (in Russian).
  10. Tomilin S.A., Pinchuk E.V., Godunov S.F., Egorov K.A., Konyshev I.I. Analiz prochnosti stropovochnogo uzla shestiluchevoy traversy [Analysis of the strength of the slinging unit of a six-beam traverse]. Materialy i tekhnologii XXI veka: sbornik statey XII Mezhdunarodnoi nauchno-technicheskoi konferencii, mart 2014 g., Penza [Materials and Technologies of the XXI Century: collection of articles of the XII International scientific and technical conference, March 2014, Penza]. 2014. P. 108-113 (in Russian).
  11. STO 1.1.1.02.009.0873-2017 Obespecheniye bezopasnosti pri ekspluatatsii zdaniy i sooruzheniy atomnykh stantsiy [STO 1.1.1.02.009.0873-2017 Ensuring Safety during the Operation of Buildings and Structures of Nuclear Power Plants]. Moskva: OAO «Kontsern Rosenergoatom» [Moscow: Rosenergoatom Concern OJSC]. 2017. 30 p. (in Russian).
  12. GOST 31937-2011. Zdaniya i sooruzheniya. Pravila obsledovaniya i monitoringa tekhnicheskogo sostoyaniya [GOST 31937-2011. Buildings and Constructions. Rules for Inspection and Monitoring of Technical Condition]. Moskva: MITKS [Moscow: MITKS]. 2012. 68 p.
    (in Russian).
Papers35 - 48
URL ArticleURL Article
 Open Article
Article NameThe Application of Potential Theory for Neutron Field Configuration Analysis of Isotropic Sources
AuthorsV.Ya. Shpicer1, V.V. Krivin2, V.A. Tolstov3, L.S. Khegay4, I.O. Ishigov5
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University «MEPhi», Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1ORCID iD: 0000-0002-5051-5091

e-mail: shpitser@mephi.ru

2ORCID iD: 0000-0003-0903-0786

WoS Researcher ID: E-2267-2018

e-mail: vvkrivin@mephi.ru

3ORCID iD: 0000-0001-7144-5195

WoS ResearcherID: F-1032-2017

e-mail: v-tolstov-2017@mail.ru

4e-mail: LSKhegai@mephi.ru

5ORCID iD: 0000-0002-5829-6989

WoS Researcher ID: E-2448-2018

e-mail: ioishigov@mephi.ru

AbstractThe article deals with the one-group approximation to the problem of parametric identification of the distribution of isotropic sources, providing the required configuration of the neutron field in vacuum.
Keywordspotential; isotropic neutron sources; inverse problems of transport theory; Poisson's equation; incorrect tasks; flaw detection; neutron diffraction; neutron tomography.
LanguageRussian
References

 

  1. Tikhonov A.N., Samarsky A.A. Uravneniya matematicheskoj fiziki [The Equations of Mathematical Physics]. Moskva [Moscow. Nauka]. 1972. 728 p. (in Russian).
  2. Prilepko A.I. Obratny`e zadachi teorii potenciala (e`llipticheskie, parabolicheskie, giperbolicheskie uravneniya i uravneniya perenosa) [The Inverse Problems of Potential Theory (Elliptic, Parabolic, Hyperbolic and Transport Equations)]. Matematicheskiye zametki [Math notes]. 1973. Vol. 14. Issue 5. P. 755-767. (in Russian)
  3. Kabanihin S.I. Obratny`e i nekorrektny`e zadachi [The Inverse and Incorrect Problems]. Novosibirsk : Izdatel'stvo SO RAN [Publishing house of the SB RAS. Novosibirsk]. 2018. 511 p. (in Russian).
  4. Medvedev A. V. Neparametricheskie sistemy` adaptacii [The Nonparametric Adaptation Systems]. Novosibirsk. Nauka, 1983. 176 p. (in Russian).
  5. Koshkin G.M., Piven I.G. Neparametricheskaya identifikatsiya stohasticheskih obektov [Nonparametric Identification of Stochastic Objects]. Rossiyskaya akademiya nauk, Dal'nevostochnoye otdeleniye [Khabarovsk: Far Eastern Branch of Russian Academy of Sciences]. 2009. 336 p. (in English).
  6. Aronson R., Yarmush D. Matrichny`e metody`: Rukovodstvo po radiacionnoj zashhite dlya inzhenerov. T. 1 [The Matrix Methods: Guidance on Radiation Protection for Engineers. Vol. 1]. Perevod s angliyskogo; pod red. D.L. Brodera [Translation from English. Ed. D.L. Broder]. Moskva: Atomizdat [Moscow. Atomizdat]. 1972. P.79-83. (in Russian).
  7. Germogenova T.A. Izbranny`e trudy`. T. 2 [Selected works. Vol. 2.]. Moskva: IPM
    im. M.V. Keldysha [Moscow. IPM them. M.V. Keldysh], 2017. 260 p. (in Russian).
  8. Germogenova T.A. et al. Al`bedo nejtronov [The Albedo of Neutrons]. Moskva: Atomizdat [Moscow. Atomizdat]. 1973. 279 p. (in Russian).
  9. Gusev N.G., Kovalev E.E., Foderaro A. Vy`vod formul. Linejny`j istochnik [Derivation of Formulas. Linear Source]. Rukovodstvo po radiatsionnoy zashchite dlya inzhenerov, T.2; perevod s angliyskogo; pod red. D.L. Brodera [Guidance on Radiation Protection for Engineers. Vol. 2. Translation from English. Ed. D.L. Broder]. Moskva: Atomizdat [Moscow. Atomizdat]. 1972. P.79-83. (in Russian).
  10. Golubev S.V., Izotov I.V., Lapin R.L. et al. Impul`sny`j kvazitochechny`j generator nejtronov na osnove sil`notochnogo E`CzR-istochnika ionov dejteriya [Pulsed Quasi-Point Neutron Generator Based on a High-Current ECR Source of Deuterium Ions]. Prikladnaya fizika [Applied Physics]. 2018. № 6. P.79. (in Russian).
  11. Aksenov V.L., Balagurov A.M., Pepelyshev Yu.N. [et al.] Vy`sokopotochny`j istochnik nejtronov na osnove kaskadnogo bustera [High-Flux Neutron Source Based on Cascade Booster]. Voprosy` atomnoj nauki i texniki [Problems of Atomic Science and Technology]. 2017. Issue 2. P. 4-25.
    (in Russian).
  12. Kozlenko D.P., Kichanov S.E., Lukin E.V. et al. Neutron Radiography and Tomography Facility at IBR-2 Reactor. Physics of Particles and Nuclei Letters, 13, 3, 346-351 (2016) (in English).

 

Papers49 - 57
URL ArticleURL Article
 Open Article

Operation of nuclear industry facilities

Article NameComparative Study of Spectral Regulation Range of Excess Reactivity Control in Pressurized Water Reactors Using Zirconium Displacers for Uranium and Thorium Fuel Cycles
AuthorsA.I. Elazaka*,**1, V.I. Savander**2, G.V. Tikhomirov**2
Address

*Department of Physics, Faculty of Science, Al-Azhar University,11884, Nasr City, Cairo, Egypt

**National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Kashirskoe shosse, 31, Moscow, Russian Federation

1ORCID ID: 0000-0003-2132-2634

e-mail: aielazaka@mephi.ru

2ORCID ID: 0000-0001-9309-5616

e-mail: savander@mail.ru

3ORCID ID: 0000-0002-5332-7272

e-mail: gvtikhomirov@mephi.ru

AbstractThe compensation for the excess reactivity in the pressurized water reactors WWER is realized with high neutron absorber materials. The traditional excess reactivity regulation methods lead to unfeasible neutron utilization and reduce the breeding coefficient and fuel burnup. In the current work, the change of moderator-to-fuel ratio is investigated as one of the spectral regulation methods for excess reactivity control and its effect on the fuel burnup. Cylindrical Zirconium rods (Zr rods) are used to fulfill the moderator-to-fuel ratio change. The Zr rods are placed between fuel rods in WWER-1000 fuel assembly. The current work calculations are performed for the thorium fuel cycle (Th-U233). The change of the Zr rods diameter leads to the variation in moderator-to-fuel ratio. A comparison between the Zr rods as a reactivity regulator in WWER-1000 fuel assembly for both fuel cycles UO2 and Th-U233. The concentration of the fertile and fissile fuel components for both fuel cycles has been analyzed. The fissile isotopes accumulation coefficient can reach 0.75 with the decrease of the moderator-to-fuel ratio in the Th-U233 fuel cycle. The primary safety parameters such as the Control rods worth, Doppler Effect reactivity coefficient, and Moderator Temperature reactivity Coefficient have been studied at different moderator-to-fuel ratio values. The safety parameters in the Th-U233 fuel cycle have higher values more than the UO2 fuel cycle with the insertion of Zr rods. From the comparison between the Zr rods effect in both fuel cycles, it is clearly shown that Zr rods in the UO2 fuel cycle have a more influential role in regulating the WWER-1000 core reactivity compared with its effect in the Th-U233 fuel cycle.
Keywordswater displacers, reactivity coefficients, WWER-1000, thorium fuel cycle, excess reactivity, spectral reactivity regulation.
LanguageRussian
References
  1. Campolina D. et al. Parametric Study of Enriched Gadolinium in Burnable Neutron Poison Fuel Rods for Angra-2 // Ann. Nucl. Energy. Elsevier Ltd, 2018. Vol. 118. P. 375-380.
  2. Fadaei A.H. Investigation of Burnable Poisons Effects in Reactor Core Design // Ann. Nucl. Energy. 2011.
  3. Frybortova L. Recommended Strategy and Limitations of Burnable Absorbers Used in WWER Fuel Assemblies // Nucl. Sci. Tech. 2019. Vol. 30, № 8.
  4. Galahom A.A. Study of Possibility of Using Europium and Pyrex Alloy as Burnable Absorber in PWR // Ann. Nucl. Energy. 2017. Vol. 110.
  5. Galahom A.A. Investigation of Different Burnable Absorbers Effects on the Neutronic Characteristics of PWR Assembly // Ann. Nucl. Energy. Elsevier Ltd, 2016. Vol. 94. P. 22-31.
  6. Safarzadeh O., Saadatian-Derakhshandeh F., Shirani A.S. Calculation of Reactivity Coefficients with Burnup Changes for WWER-1000 Reactor // Prog. Nucl. Energy. 2015.
  7. Parisi C., Negrenti E., Pecchia M. B&W Spectral Shift Control Reactor Lattice Experiments: Evaluation of Core I and Core VIII // Nucl. Sci. Eng. 2014. Vol. 178, № 4.
  8. Chibinyaev A. V., Alekseev P.N., Teplov P.S. Estimation of the Effect of Neutron Spectrum Regulation on WWÉR-1000 Fuel Burnup // At. Energy. 2006. Vol. 101, № 3. P. 680-683.
  9. Teplov P. et al. The Main Characteristics of the the WWER-S with Spectrum Shift Regulation. 2015.
  10. Elazaka A.I., Tikhomirov G. V. Potential of the WWER Reactor Spectral Regulation with Regard for Fuel Burnup// Izv. Wysshikh Uchebnykh Zawedeniy, Yad. Energ. 2020. Vol. 2020, № 2.
  11. Elazaka A.I., Tikhomirov G.V., Abdelghafar Galahom A. Study the Neutronic Feasibility of Using Zr as an Energy Regulator Instead of Traditional Methods // Int. J. Energy Res. 2021.
  12. Akbari-Jeyhouni R. et al. The Utilization of Thorium in Small Modular Reactors – Part I: Neutronic assessment // Ann. Nucl. Energy. 2018. Vol. 120.
  13. Castro V.F., Velasquez C.E., Pereira C. Criticality and Depletion Analysis of Reprocessed Fuel Spiked with Thorium in a PWR Core // Nucl. Eng. Des. 2020. Vol. 360.
  14. Cui D.Y. et al. Possible Scenarios for the Transition to Thorium Fuel Cycle in Molten Salt Reactor by Using Enriched Uranium // Prog. Nucl. Energy. 2018. Vol. 104.
  15. International Atomic Energy Agency IAEA. Advances in Small Modular Reactor Technology Developments A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2018 Edition // Iaea. 2018.
  16. International Atomic Energy Agency. Thorium Fuel Cycle: Potential Benefits and Challenges. 2005. № May.
  17. Lung M., Gremm O. Perspectives of the Thorium Fuel Cycle // Nucl. Eng. Des. 1998. Vol. 180,
    № 2. P. 133-146.
  18. Thilagam L. et al. A WWER-1000 LEU and MOX Assembly Computational Benchmark Analysis Using the lattice Burnup Code EXCEL // Ann. Nucl. Energy. Elsevier Ltd, 2009. Vol. 36, № 4.
    P. 505–519.
  19. Leppänen J. et al. The Serpent Monte Carlo code: Status, Development and Applications in 2013 // Ann. Nucl. Energy. 2015. Vol. 82. P. 142-150.
Papers58 - 67
URL ArticleURL Article
 Open Article
Article NameControl Valve Condition Checking by Spectral Analysis
AuthorsD.V. Shvets1, I.A. Mikshin2, A.A. Lapkis3, E.S. Arsenteva4
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University «MEPhI», Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1ORCID iD: 0000-0002-4651-9495

e-mail:svecdima6@gmail.com

2ORCID iD: 0000-0001-5854-2353

e-mail:mikshin89@mail.ru

3ORCID iD: 0000-0002-9431-7046

e-mail: paltusmeister@gmail.com

4e-mail: ESArsenteva@mephi.ru

AbstractThe research work considers and analyzes the problem of control valve failure in case of shaft-gear break during normal operation. In order to identify typical deviations and causes of failure of the electrically driven valves, the amplitude-frequency spectra of the current signal taken at one or more phases of the electric motor were analyzed. The method of spectral diagnostics adopted for analysis allows detecting hidden defects of reinforcement not detected in other types of analysis. In order to justify the study, spectral analysis is carried out on control valves installed in the main condensate and feedwater systems of power units WWER-1000 and WWER-1200. As a result of the study, the following relationships were established increase of amplitude speed of electric motor (EM) to -30 dB is a fact of EM operation at increased load, which will lead to wear of thrust-radial bearings; appearance of baseband frequencies in the region of 50 Hz frequency indicates that there are deviations in setting of electric drive torque limiters. The detected defects, in the future, will lead to the failure of the gear shaft and the shutdown of the power unit. The results of the performed work are used to supplement the existing catalog of defects of pipeline valves developed by RI NPE VETI NRNU MEPhI.
Keywordsdiagnostics of valves, spectral method, NPP, deviations in operation, electrically driven valves, control valves, undercarriage defect, shaft-gear, main condensate system, feed water supply.
LanguageRussian
References
  1. Andrushechko, S. A. AES s reaktorami VVER-1000. Ot fizicheskih osnov ekspluatacii do evolyucii proekta [NPP with WWER-1000 Reactors. From Physical Foundations of Operation to the Evolution of the Project] / S.A. Andrushechko, A.M. Afrov, V.N. Generalov, K.B. Kosourov, Yu.M., Semchenkov, V.F. Ukraintsev. – Moscow: Logos, 2010. P.604 (in Russian).
  2. Sovremennye reaktory rossijskogo dizajna [Modern Russian-Designed Reactors]. Oficial'nyj sajt gosudarstvennoj korporacii Rosatom [Official website of the state corporation]. 2021. URL: https://rosatom.ru/production/design/sovremennye-reaktory-rossiyskogo-dizayna/ (in Russian).
  3. GOST 5632-72. Stali vysokolegirovannye i splavy korrozionnostojkie, zharostojkie i zharoprochnye. Marki [High-Alloy Steels and Alloys are Corrosion-Resistant, Heat-Resistant and Heat-Resistant. Stamps]: Interstate standard: official publication: approved and put into effect by the Resolution of the State Committee of Standards of the Council of Ministers of the USSR of 27.12.72 N 2340: introduced for the first time: date of introduction 1975-01-01 / developed by the Ministry of Ferrous Metallurgy of the USSR. Moscow: IPK Publishing House of Standards, 2001. P.64 (in Russian).
  4. DeWall, K. Motor-Operated Valve (MOV) Actuator Motor and Gearbox Testing / K. DeWall,
    J.C. Watkins, D. Bramwell // Idaho National Engineering Laboratory, U.S. Department of Energy. – 1997. P.58 (in English).
  5. MT 1.2.3.02.999.0085. Diagnostirovanie truboprovodnoj elektroprivodnoj armatury. Metodika [Diagnostics of Pipeline Electric Drive Valves. Methodology]. Organization standard: official publication: approved and put into effect Order of JSC "Concern Rosenergoatom" No. 9/270-P of 22.03.2012: introduced for the first time: 01.06.2012 / developed by the Research Institute "Energomashinostroeniya", 2012. P.127 (in Russian).
  6. Akhmetshin, A.R. Technical Diagnostics of Electrically Operated Valves at NPP /
    A.R Akhmetshin, V.N Golomidov, and R.R Vildanov // International Conference «Methodological problems in reliability study of large energy systems», 14 December 2020. P. 1-4 (in English).
  7. Sinelshchikov, P. V., Chernov A.V. Osobennosti ispol'zovaniya metodov analiza chastotnyh sostavlyayushchih tokovogo signala EPA [Features of Use of Methods for Analyzing the Frequency Components of the Current Signal of the EPA] [Global Nuclear Safety]. 2012. № 1(2). P. 1-4 (in Russian).
  8. Sinelshchikov P. V. Informacionno-izmeritel'naya sistema dlya diagnostirovaniya elektroprivodnoj armatury atomnyh stancij na osnove vejvlet-preobrazovaniya [Information and Measurement System for Diagnosing Electric Drive Valves of Nuclear Power Plants Based on the Wavelet Transform]: specialty 05.11.16 «Information and Measurement and Control Systems (Instrument Engineering)»: abstract of the PhD thesis in Technical Sciences / Sinelshchikov Pavel Vladimirovich; VITI NIYaU MEPhI. – Volgodonsk 2012. Place of defense: Volgograd State University (in Russian).
  9. Dipankar, M. Sensorless Stall Detection with the DRV8889-Q1 / M. Dipankar // Texas Instruments. 2020. P. 23 (in English).
  10. Abidova E.A. Povyshenie chuvstvitel'nosti diagnostirovaniya oborudovaniya AES v usloviyah perekhoda na 18-mesyachnyj toplivnyj cikl [Increased Sensitivity of Diagnostics of NPP Equipment in Conditions of Transition to 18-Month Fuel Cycle] [Global Nuclear Safety]. 2019. №. 4(33). P. 1-5 (in Russian).
  11. Obshchie polozheniya obespecheniya bezopasnosti atomnyh stancij: Federal'nye normy i pravila [General Provisions for Ensuring the Safety of Nuclear Power Plants]: Federal norms and rules: official publication: approved and put into effect by Order of Rostechnadzor of 17.12.2015 N 522: introduced for the first time: date of introduction 02.02.2016 - Moscow, 2016. P.74 (in Russian).
  12. STO 1.1.1.01.0069. Pravila organizacii tekhnicheskogo obsluzhivaniya i remonta sistem i oborudovaniya atomnyh stancij [Rules of Organization of Maintenance and Repair of Systems and Equipment of Nuclear Power Plants]: Organization standard: official publication: approved and put into effect by Order of JSC "Concern Rosenergoatom" dated 04.05.2017 No. 9/588-P: introduced for the first time: date of introduction 26.10.2017 / developed by JSC "VNIIAES", Moscow, 2021. P.112 (in Russian).
  13. Lee Sang-hyuk Fourier and Wavelet Transformations Application to Fault Detection of Induction Motor with Stator Current / Sang-hyuk Lee, Yi-qi Wang, Jung-il Song // Central South university Press and Springer-Verlag. 2010. №17. P.8 (in English).
  14. Santhosh K.V. Fault Detection of a Flow Control Valve Using Vibration Analysis and Support Vector Machine / K.V. Santhosh, Swetha R. // MDPI Open Access Journals. 2019. P.15
    (in English).
Papers68 - 76
URL ArticleURL Article
 Open Article
Article NameAnalysis of the Possibility of Ice Melting Intensity Monitoring by Direct Current in High-Voltage Electrical Systems
AuthorsE.S. Moloshnaya1, V.V. Nechitailov2, I.V. Melnikov3, S.A. Baran4
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University «MEPhi», Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1ORCID iD: 0000-0001-8766-2290

WoS Researcher ID: AAH-5369-2020

e-mail: elena_moloshnay@mail.ru

2e-mail: VVNechitailov@mephi.ru

3ORCID iD: 0000-0002-8613-9083

WoS Researcher ID: AHH-5335-2020

e-mail: comosabe@mail.ru

4ORCID iD: 0000-0002-3232-4072

WoS Researcher ID: I-7933-2018

e-mail: bastr@rambler.ru

AbstractThe Rostov nuclear power plant is the largest energy center in the South of Russia. Electricity from the nuclear power plant is transmitted to nodal substations across the territory of the Southern region, the climatic conditions of which contribute to the formation of ice deposits on power lines, this determines the urgency of the problem of ice melting. Existing systems for early detection of ice and melting it on wires of 110-500 kV overhead lines allow preventing wire breakage and destruction of supports. In modern methods ice melting is performed with alternating and direct current using special transformers and rectifiers with a melting voltage of 10 kV and a melting current of up to 3600 A, currents and voltages to prevent overheating of contacts in melting circuits and compliance with melting parameters. In circuits using direct current, there is no reliable method for controlling its magnitude. The paper considers the possibility of using a fiber-optic current sensor with a measurement range from 1 to 3600 A.
Keywordsice melting, melting current and voltage control, fiber-optic sensor, step-down transformer, three-phase bridge rectifier, control, regulation, protection and automation system, magnetic field induction, Faraday effect, optoelectronic transceiver, polarizer.
LanguageRussian
References

 

  1. Chechernikov V.I. Magnitnyye izmereniya [Magnetic Measurements]. Moskva: Izdatel'stvo Moskovskogo universiteta [Moscow: Moscow University Press]. 1969. Р. 320-327 (in Russia).
  2. Abramenkova I., Korneev I., Troitskiy Yu. Opticheskiye datchiki toka i napryazheniya [Optical sensors for current and voltage]. Komponenty i tekhnologii [Components and Technologies]. N 8. P. 60-63 (in Russia).
  3. Gavrichev V.D., Dmitriev A.L. Volokonno-opticheskiye datchiki magnitnogo polya [Fiber-optic magnetic field sensors]. Tutorial. Sankt-Peterburg: SPbNIU ITMO [St. Petersburg: SPbNIU ITMO]. 2013. 83 p. (in Russia).
  4. Nekrashevich E., Starostin N. Volokonno-opticheskiye datchiki toka [Fiber Optic Current Sensors]. Elektronnyye komponenty [Electronic Components]. 2006. № 11. P. 23-77 (in Russia).
  5. Gulyaev Yu.V., Nikitov S.A., Potapov V.T., Chamorovsky Yu.K. Volokonno-opticheskiye tekhnologii, ustroystva, datchiki i sistemy [Fiber-Optic Technologies, Devices, Sensors and Systems]. Foton-ekspress: Spetsvypusk [Photon Express: Special]. 2005. № 6. P. 114-127
    (in Russia).
  6. Rembez S.I., Kargin N.I. Fizika tverdogo tela. Opticheskiye, dielektricheskiye i magnitnyye svoystva tverdykh tel. Ch. III [Solid State Physics. Optical, Dielectric and Magnetic Properties of Solids. P. III]. Stavropol: SevKavGTU [Stavropol: Publishing House SevKavGTU]. 2003
    (in Russia).
  7. Udd E. Volokonno-opticheskie datchiki [Fiber Optic Sensors]. Moskva: Tekhnosfera [Moscow: Technosphere]. 2008. 520 p. (in Russia).
  8. Okoshi T. Volokonno-opticheskie datchiki [Fiber Optic Sensors]. Leningrad: Energoatomizdat. 1990. 256 p. (in Russia).
  9. Kulchin Yu.N. Raspredelennye volokonno-opticheskie datchiki i izmeritel'nye seti [Distributed Fiber Sensors and Measuring Networks]. Moskva: Fizmatlit [Moscow: Fizmatlit]. 2001. 272 p.
    (in Russia).
  10. Sokolov A., Yatseev V. Volokonno-opticheskie datchiki i sistemy: principy postroeniya, vozmozhnosti i perspektivy [Fiber-Optic Sensors and Systems: Principles of Construction, Possible Costs and Prospects]. Svetovaya volna. Russkoye izdaniye [Lightwave. Russian Edition]. 2006. № 4. P. 44-46 (in Russia).
  11. Kalitievsky N. I. Volnovaya optika [Wave Optics]. Saint Petersburg. Lan' Publisher, 2006. 480 p.
  12. Volkova E.A. Polyarizacionnye izmereniya [Polarization Measurements]. Moskva: Nauka [Moscow: Nauka]. 1974. 224 p. (in Russia).
Papers77 - 83
URL ArticleURL Article
 Open Article

undefined

Article NameThe Main Directions of Formation and Development of Safety Culture in the Russian Federation
AuthorsI.E. Lyskova
Address

The Komi Republican Academy of State Service and Administration, Kommunisticheskaya St, 11, Syktyvkar, Russia, 167000

ORCID iD: 0000-0003-2748-2794

WoS Researher ID: T-1644-2018

e-mail: IrinaLyskova@mail.ru

 

AbstractThe article actualizes the political, legal, socio-economic and socio-cultural aspects of safety culture in the Russian Federation. The article offers a general analysis of the current regulatory framework that defines the conceptual foundations for the formation and development of a culture of life safety, a culture of economic security and environmental culture in the Russian Federation.
Keywordsnational and economic security, cultural policy, safety culture, life safety, economic safety culture, environmental culture, labor protection.
LanguageRussian
References

 

  1. O strategii nacionalnoy bezopasnosti Rossiyskoy Federacii: ukaz prezidenta RF ot 31.12.2015 № 683. Sobranie zakonodatelstva RF, 04.01.2016. – № 1 (chast II). – St. 212 [National Security Strategy of the Russian Federation: decree of the President of the Russian Federation No. 683 of 31.122015 / / Collection of Legislation of the Russian Federation. - 04.01.2016, - No. 1 (Part II). - Article 212].
  2. Koncepciya obshchestvennoy bezopasnosti v Rossiyskoy Federacii. Utv.prezidentom RF 14.11.2013. Pr-2685 (oficialno document opublikovan ne byl). [Concept of Public Safety in the Russian Federation, Approved by the Ministry of Foreign Affairs of the Russian Federation. The President of the Russian Federation 14.11.2013 No. Pr-2685 / The document was not officially published. [Electronic resource] Official Internet portal of legal information / URL: http:// www.pravo.gov.ru accessed 23.01.2021].
  3. O sostoyanii zashchity naseleniya i territoriy Rossiyskoy Federacii ot chrezvychaynyh situaciy prirodnogo i tehnogennogo haraktera v 2019 g.: gosudarstvennyy doklad. M.: mchs Rrossii FBGU VNII-GOCHS (FC) 2020. S.7, 20. Elektronnyy resurs Url: https:// www.hs.gov.ru.dokumenty 4602, data obrashcheniya 23.01.2021 [State of Protection of the Population and Territories of the Russian Federation from Emergency Situations of Natural and Man-Made Nature in 2019: state report. - Moscow: EMERCOM of Russia; FBGU VNII GOChS (FTS) 2020. p. 7, 20. [Electronic resource] // URL: https://www.hs.gov.ru/dokumenty/4602 accessed 23.01.2021].
  4. Ob utverzhdenii osnov gosudarstvennoy kulturnoy politiki: ukaz prezidenta Rossiyskoy Ffederacii ot 24.12.2014. Elektronnyy resurs.. Oficialnyy internet portal pravovoy informacii. Url: http://www. pravo.gov.ru. data obrashcheniya 23.01.2021 [Approval of the Fundamentals of the State Cultural Policy: decree of the President of the Russian Federation of 24.12.2014. [Electronic resource] Official Internet portal of legal information / URL: http:// www.pravo.gov.ru accessed 23.01.2021].
  5. Ob utverzhdenii strategii gosudarstvennoy kulturnoy politiki na period do 2030 goda: rasporyazhenie pravitelstva Rossiyskoy Federacii ot 29.02.2016. № 326-r (red. ot 30.03.2018). Sobranie zakonodatelstva RF. – 14.03.2016. – № 11. St.1552 [Approval of the Strategy of the State Cultural Policy for the Period up to 2030: order of the Government of the Russian Federation of 29.02.2016 No. 326-r (ed. of 30.03.2018) / / Collection of Legislation of the Russian Federation, – 14.03.2016, – No. 11. – St. 1552.].
  6. Ob utverzhdenii strategii gosudarstvennoy nacionalnoy politiki Rossiyskoy Ffederacii na period do 2025-goda: ukaz prezidenta Rossiyskoy Federacii ot 19.12.2012. № 1666 (red. ot 06.12.2018). Sobranie zakonodatelstva RF. – 24.12.2012. – № 52, – St. 7477 [Approval of the Strategy of the State National Policy of the Russian Federation for the Period up to 2025: Decree of the President of the Russian Federation of 19.12.2012 No. 1666 (ed. of 06.12.2018) / / Collection of Legislation of the Russian Federation, - 24.12.2012. - No. 52. - St. 7477.].
  7. Ob utverzhdenii strategii razvitiya vospitaniya v Rossiyskoy Federacii na period do 2025 goda: rasporyazhenie pravitelstva Rossiyskoy Federacii ot 29.05.2015. № 996-rю Eelektronnyy resurs. Oficialnyy internet portal pravovoy informacii. Url: http:// www.pravo.gov.ru data obrashcheniya 23.01.2021. [Approval of the Strategy for the Development of Education in the Russian Federation for the Period up to 2025: Order of the Government of the Russian Federation No. 996-r of 29.05.2015. [Electronic resource] Official Internet portal of legal information / URL: http:// www.pravo.gov.ru accessed 23.01.2021].
  8. Ob utverzhdenii koncepcii gosudarstvennoy semeynoy politiki v Rossii na period do 2025 goda: rasporyazhenie pravitelstva Rossiyskoy Federacii ot 25.08.2014. № 1618-r Elektronnyy resurs. Oficialnyy internet portal pravovoy informacii. Url: http:// www.pravo.gov.ru data obrashcheniya 23.01.2021. [Approval of the Concept of State Family Policy in Russia for the Period up to 2025: Order of the Government of the Russian Federation No. 1618-r of 25.08.2014 [Electronic resource] Official Internet portal of legal information / URL: http:// www.pravo.gov.ru accessed 23.01.2021].
  9. Ob utverzhdenii osnov gosudarstvennoy molodyozhnoy politiki Rossiyskoy Federacii na period do 2025-goda: rasporyazhenie pravitelstva Rossiyskoy Federacii ot 29.11. 2014. № 2403-r Sobranie zakonodatelstva RF. – 15.12.2014. – № 50. – St. 7185 [Approval of the Fundamentals of the State Youth Policy of the Russian Federation for the Period up to 2025: Order of the Government of the Russian Federation No. 2403-r of 29.11.2014 / / Collection of Legislation of the Russian Federation. – 15.12.2014. - No. 50. - St. 7185.].
  10. Ob utverzhdenii koncepcii demograficheskoy politiki Rossiyskoy Federacii na period do 2025 goda: ukaz prezidenta Rossiyskoy Federacii ot 09.10.2007. № 1351. Sobranie zakonodatelstva RF.– 15.10.2007. – № 42.– St. 5009. [Approval of the Concept of Demographic Policy of the Russian Federation for the Period up to 2025: Decree of the President of the Russian Federation No. 1351 of 09.10. 2007 // Collection of Legislation of the Russian Federation. – 15.10.2007. - No. 42. - St. 5009.].
  11. O koncepcii gosudarstvennoy migracionnoy politiki Rossiyskoy Federacii na 2019-2025-gody: ukaz prezidenta Rossiyskoy Federacii ot 31.10.2018 № 622. Sobranie zakonodatelstva RF. – 05.11.2018. – № 45. – St. 6917 [Concept of the State Migration Policy of the Russian Federation for 2019-2025: Decree of the President of the Russian Federation No. 622 of 31.10.2018 / / Collection of Legislation of the Russian Federation. - 05.11.2018-No. 45. - St. 6917].
  12. GOST R 22.3.07-2014. Nacionalnyy standart Rossiyskoy Federacii. Bezopasnost v chrezvychaynyh situaciyah. Kultura bezopasnosti zhiznedeyatelnosti. Obshchie polozheniya. Moskva: Standartinform. 2019. 6-s. [GOST R 22.3.07-2014. National Standard of the Russian Federation. Safety in Emergency Situations. Culture of Life Safety. General Provisions. Moscow: Standartinform, 2019. – 6 p.].
  13. GOST R 22.3.08-2014. Nacionalnyy standart Rossiyskoy Federacii. Bezopasnost v chrezvychaynyh situaciyah. Kultura bezopasnosti zhiznedeyatelnosti. Terminy i opredeleniya. Moskva: Standartinform. 2019. 5-s [GOST R 22.3.08-2014. National Standard of the Russian Federation. Safety in Emergency Situations. Culture of Life Safety. Terms and definitions. Moscow: Standartinform, 2019. – 5 p.].
  14. GOST R 55059-2012. Nacionalnyy standart Rossiyskoy Federacii. Bezopasnost v chrezvychaynyh-situaciyah. Menedzhment riska chrezvychaynoy situacii. Terminy i opredeleniya. Moskva: Standartinform. 2018. 7-s. [GOST R 55059-2012. National Standard of the Russian Federation. Safety in Emergency Situations. Emergency Risk Management. Terms and definitions. Moscow: Standartinform, 2018. – 7 p].
  15. Ob obrazovanii v Rossiyskoy Federacii: Federalnyy zakon ot 29.12.2012. № 273- FZ (red. ot 08.12.2012. Eelektronnyy resurs oficialnyy internet portal pravovoy informacii. Url: http:// www.pravo.gov.ru. 08.12.2010 data obrashcheniya 23.01.2021. [Education in the Russian Federation: Federal Law No. 273-FZ of 29.12.2012 (as amended on 08.12.2012) [Electronic resource] Official Internet portal of legal information / URL: http: / / www.pravo.gov.ru, 08.12.2010. accessed 23.01.2021].
  16. Primernaya osnovnaya obrazovatelnaya programma nachalnogo obshchego obrazovaniya (odobrena resheniem federalnogo uchebno-metodicheskogo obedineniya po obshchemu obrazovaniyu, protocol ot 08.04.2015. № 115. Elektronnyy resurs. Oficialnyy internet portal pravovoy informacii. Url: -http: // www.pravo.gov.ru data obrashcheniya 23.01.2021. [Approximate Basic Educational Program of Primary General Education (approved by the decision of the federal educational and methodological association for general education, Protocol No. 1/15 of 08.04.2015. [Electronic resource] Official Internet portal of legal information / URL: http: // www.pravo.gov.ru accessed 23.01.2021].
  17. Primernaya osnovnaya obrazovatelnaya programma osnovnogo obshchego obrazovaniya (odobrena resheniem federalnogo uchebno-metodicheskogo obedineniya po obshchemu obrazovaniyu, protocol ot 08.04.2015. № 115 (red. ot 04.02.2020. Elektronnyy resurs. Oficialnyy internet portal pravovoy informacii. Url: http:// www.pravo.gov.ru –dataobrashcheniya 23.01.2021. [Approximate Basic Educational Program of Basic General Education (approved by the decision of the Federal Educational and Methodological Association for General Education, Protocol No. 1/15 of 08.04.2015, ed. from 04.02.2020. [Electronic resource] Official Internet portal of legal information / URL: http: / / www.pravo.gov.ru accessed 23.01.2021].
  18. Primernaya osnovnaya obrazovatelnaya programma srednego obshchego obrazovaniya (odobrena resheniem federalnogo uchebno-metodicheskogo obedineniya po obshchemu obrazovaniyu, protocol ot 28.06.2016. № 216-z. Elektronnyy resurs. Oficialnyy internet portal pravovoy informacii. Url: http:// www.pravo.gov.ru data obrashcheniya 23.01.2021. [Approximate Basic Educational Program of Secondary General Education (approved by the decision of the federal Educational and Methodological Association for General Education, Protocol No. 2/16-z of 28.06.2016). [Electronic resource] Official Internet portal of legal information / URL: http: / / www.pravo.gov.ru accessed 23.01.2021].
  19. Rabotat radi luchshego budushchego. Globalnaya komissiya po voprosam budushchego sfery truda. Mezhdunarodnoe byuro truda. Zheneva: MBT. 2019. 91 s. [Work for Better Future. Global Commission on the Future of Work. International Labour Office. - Geneva: ILO, 2019, - 91 p.].
  20. Bezopasnyy trud – pravo kazhdogo cheloveka. Doklad MOT k vsemirnomu dnyu ohrany truda.2009. Subregionalnoe byuro ohrany truda dlya stran Vostochnoy Evropy i Centralnoy Azii. 2009. 26 s. [Safe Work is the Right of Every Person. The ILO report on World Labor Protection Day 2009. Sub-regional Office for Occupational Safety and Health for Eastern Europe and Central Asia. 2009. - 26 p.].
  21. Predotvrashchenie proizvodstvennogo travmatizma i professionalnoy zabolevaemost: globalnaya strategiya. Prodvizhenie kultury ohrany truda. Doklad MOT k vsemirnomu dnyu ohrany truda. 2005. Zheneva:MBT. 2005. 18 s. [Prevention of Occupational Injuries and Occupational Diseases: a Global Strategy. Promotion of Culture of Occupational Safety and Health. ILO report on the World Day for Occupational Safety and Health – 2005. - Geneva: ILO, 2005, - 18 p.].
  22. Ohrana truda v usloviyah pandemii. Doklad MOT k vsemirnomu dnyu ohrany truda-2020. Elektronnyy resurs. Url : https://www.ilo.org/moscow/information-resources/publications/
    WCMS_746691/lang-ru/index.htm data obrashcheniya 23.01.2021. [22. Occupational Health and Safety in the Context of a Pandemic. The ILO report on the World Day for Occupational Safety and Health 2020. [Electronic resource] / URL: https://www.ilo.org/moscow/information-resources/publications/WCMS_746691/lang-ru/index.htm accessed 23.01.2021].
  23. Ob utverzhdenii strategii povysheniya finansovoy gramotnosti v Rossiyskoy Federacii na 2017-2023 gody: rasporyazhenie pravitelstva Rossiyskoy Federacii ot 25.09.2017. № 2039-r. Elektronnyy resurs. Oficialnyy internet portal pravovoy informacii. Url:http://www.pravo.gov.ru data obrashcheniya 23.01.2021. [Approval of the Strategy for Improving Financial Literacy in the Russian Federation for 2017-2023: Order of the Government of the Russian Federation No. 2039-r of 25.09. 2017 [Electronic resource] / Official Internet portal of legal information / URL: http:// www.pravo.gov.ru accessed 23.01.2021].
  24. Ob ohrane okruzhayushchey sredy: Federalnyy zakon ot 10.01.2002. № 7-FZ (red. ot 30.12.2020.). Sobranie zakonodatelstva RF. 14.01.2020. Eelektronnyy resurs. Oficialnyy internet portal pravovoy informacii. Url:http://www.pravo.gov.ru, 30.12.2020. data obrashcheniya 23.01.2021. [Environmental Protection: Federal Law No. 7-FZ of 10.01.2002 (as amended on 30.12.2020) / Collection of Legislation of the Russian Federation, 14.01.2020 [Electronic resource] / Official Internet portal of legal information / URL: / http:// www.pravo.gov.ru - 30.12.2020. date of access-23.01.2021].
  25. O strategii ekologicheskoy bezopasnosti Rossiyskoy Federacii na period do 2025-goda: ukaz prezidenta RF ot 19.04.2017. № 176, Sobranie zakonodatelstva RF, 24.04.2017. № 17, st. 2546 [Strategy of Environmental Safety of the Russian Federation for the Period up to 2025: Decree of the President of the Russian Federation No. 176 of 19.04.2017 / Assembly of Legislation of the Russian Federation, 24.04.2017, - No. 17. - Article 2546].
  26. Osnovy gosudarstvennoy politiki v oblasti ekologicheskogo razvitiya Rossiyskoy Federacii na period do 2030 goda (utv. Prezidentom RF 30.04.2012.). (Oficialno document opublikovan ne byl). [Fundamentals of State Policy in the Field of Environmental Development of the Russian Federation for the Period up to 2030 (approved by the President of the Russian Federation on 30.04.2012.) / The document was not officially published].
Papers84 - 100
URL ArticleURL Article
 Open Article
Article NameProviding a High Level of Safety Culture when Exporting Nuclear Power Technologies
AuthorsV.A. Rudenko1, T.S. Popova2, Yu.A. Evdoshkina3
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”, Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1ORCID iD: 0000-0002-6698-5469

WoS Researcher ID: B-7730-2016

e-mail: VARudenko@mephi.ru

2ORCID iD: 0000-0002-0554-2672

e-mail: TSPopova@mephi.ru

3ORCID iD: 0000-0002-6704-0643

WoS Researcher ID: G-8379-2017

e-mail: YAEvdoshkina@mephi.ru

AbstractThe paper considers the concept and fundamental principles of safety culture which along with the high professionalism of service personnel in Russia and abroad as well as the reliable operation of all production and technical systems, are necessary conditions for nuclear and radiation safety of energy enterprises. Taking into account the influence of national culture on safety culture, training in the effective use of tools for preventing personnel errors along with the high quality of education of foreign students will contribute to the formation of a principled position in the field of safety and efficiency of functioning of nuclear facilities.
Keywordsexport-oriented strategy of Rosatom State Corporation, national culture and safety culture, key principles of a strong / healthy safety culture.
LanguageRussian
References
  1. Mashin V.A Voprosy kul'tury bezopasnosti pri stroitel'stve AES [Safety Culture Issues during the Construction of Nuclear Power Plants]. Elektricheskie stancii [Power plants]. 2016. No.4
    (in Russian).
  2. Stepchenko T.S. Aspekty vospriyatiya obshchestvennost'yu processov razvitiya atomnoj energetiki (na primere «RoAES») [Aspects of Public Perception of Nuclear Power Development Processes (on the example of Rostov NPP)]. Prakticheskij marketing [Practical Marketing]. 2014. No.7(209). P.35-40 (in Russian).
  3. Klyuchevye voprosy praktiki povysheniya kul'tury bezopasnosti: INSAG-15 [Key issues in the practice of enhancing safety culture: INSAG-15] [Text] / Doklad Mezhdunarodnoj konsul'tativnoj gruppy po yadernoj bezopasnosti.[Report of the International Nuclear Safety Advisory Group]. - Vena: Mezhdunarodnoe agentstvo po atomnoj energii [Vienna: International Atomic Energy Agency]. 2002. 24 p. (in Russian).
  4. V.A. Kul'tura bezopasnosti: Principy analiza sobytij na AES [Safety Culture: Principles of Event Analysis at NPPs]. Elektricheskie stancii [Electric Power Plants]. 2015. No.9. P.39-48
    (in Russian)
  5. Plotnikova U.A., Karelina V.V., Vasilenko N.P., Evdoshkina Yu.A. Rol' otraslevyh vuzov v obespechenii vysokogo urovnya kul'tury bezopasnosti na zarubezhnyh ob"ektah GK «Rosatom» [Role of Industry Universities in Ensuring a High Level of Safety Culture at Foreign Facilities of the State Atomic Energy Corporation "Rosatom"]. Bezopasnost' yadernoj energetiki: tezisy XV Nauchno-prakticheskoj konferencii [ Nuclear Power Safety: Abstracts of the XV Scientific and Practical Conference]. 2019. P.140-147 (in Russian).
  6. Rudenko V.A., Golovko M.V., Evdoshkina Yu.A., Vasilenko N.P. K voprosu ob effektivnyh praktikah podgotovki kadrov dlya realizacii eksportoorientirovannoj strategii GK «Rosatom» [Effective Practice of Personnel Training for the Implementation of the Export-Oriented Strategy of the State Corporation Rosatom]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. 2019. No.1(30). P. 124-135 (in Russian).
  7. Rudenko V.A., Evdoshkina Yu.A. Realizaciya interaktivnyh tekhnologij obucheniya v processe prepodavaniya disciplin, napravlennyh na obespechenie bezopasnogo funkcionirovaniya AES [Implementation of Interactive Learning Technologies in the Process of Teaching Disciplines to Ensure the Safe Operation of Nuclear Power Plants]. Nauchnaya sessiya NIYAU MIFI - 2015: sb. tez. i st. nauch.-prakt. konf., 16-20 fevr. 2015 g. [Scientific session of NRNU MEPhI - 2015: collection of articles. thesis. and Art. scientific-practical Conf., 16–20 Feb. 2015]. Volgodonsk: VITI NRNU MEPhI. P.161-164 (in Russian).
  8. Lobkovskaya N.I., Evdoshkina Yu.A. Professional'noye tselepolaganiye kak sostavlyayushchaya kul'tury bezopasnosti budushchego spetsialista-atomshchika [Professional goal-setting as a component of the safety culture of a future nuclear specialist]. Sovremennoye obrazovaniye [Modern education]. 2017. No. 1. P.32-38 (in Russian).
  9. Evdoshkina Yu.A., Rudenko V.A. Praktiko-orientirovannaya tekhnologiya formirovaniya kul'tury bezopasnosti vypusknikov, orientirovannyh na rabotu v atomnoj otrasli [Practice-Oriented Technology for the Formation of a Safety Culture of Graduates Focused on Work in Nuclear Industry]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. 2017. No.4(25). P. 122-129 (in Russian).
  10. Vasilenko N.P., Evdoshkina Yu.A. Pedagogicheskaya model' formirovaniya kul'tury bezopasnosti vypusknikov, orientirovannyh na rabotu v atomnoj otrasli [Pedagogical Model of the Formation of Safety Culture of Graduates Focused on Work in Nuclear Industry]. Bezopasnost' yadernoj energetiki: tez. dokl. HSH Mezhdunar. nauch.-prakt. konf., 31 maya - 2 iyunya 2017 g. [Safety of Nuclear Energy: abstracts. report XSh Int. scientific-practical Conf., May 31 - June 2, 2017 / VITI NRNU MEPhI]. Volgodonsk. 2017. ISBN 978-5-7262-2364-3 (in Russian).
  11. Kadry. Projti ne poskol'znut'sya [Personnel. Pass without Slipping]. Rosenergoatom [Rosenergoatom]. 2017. No.7. P.27 (in Russian).
  12. Smetnik A.A., Murlis D.V. Kul'tura bezopasnosti i eyo svyaz' s nacional'noj kul'turoj i kul'turoj organizacii [Safety Culture and its Connection with the National Culture and Culture of the Organization]. Elektricheskie stancii [Power plants]. 2016. No.1(1014). P.5-10 (in Russian).
Papers101 - 109
URL ArticleURL Article
 Open Article