2021, 3 (40)

Design, manufacturing and commissioning of nuclear industry equipment

Article NameEvaluation of Radiant Heat Transfer Influence on the Temperature Field of Fuel Element Microcell of Pressurized Water-Cooled Nuclear Reactor
AuthorsV.K. Semenov1, N.B. Ivanova2, M.A. Volman3, A.A. Belyakov4
Address

Ivanovo State Power Engineering University named after V.I. Lenin, Rabfakovskaya St., 34, Ivanovo,
 Russia 153003

1ORCID iD: 0000-0001-9765-2096

WoS Researcher ID: T-1066-2017

e-mail: semenov_vk@mail.ru

2ORCID iD: 000-002-9519-6047

WoS Researcher ID: AAU-285-2021

e-mail: rgr_ivanova@rambler.ru

3ORCID iD: 0000-0001-6805-6287

WoS Researcher ID: M-1304-2018

e-mail: maria_volman@mail.ru

4ORCID iD: 0000-0003-4374-3077

WoS Researcher ID: S-7878-2017

e-mail: bel.aes@ya.ru

 

AbstractOptimization of the core composition of the pressurized water reactors is associated with the calculation of the temperature fields of heat exchange microcells containing separate fuel elements. Taking into account the radiation-conductive heat transfer inside the fuel element is based on the statement that the helium gap between the column of fuel pellets and the wall of the fuel element has the properties of a black body. This is not true as helium is a monatomic gas, it neither absorbs nor emits, i.e. transparent to heat radiation. The article substantiates the physical and mathematical model of a microcell of a fuel element of a pressurized water-cooled nuclear reactor, taking into account radiation heat transfer. The model takes into account that helium is transparent to thermal radiation, and the fuel element is cooled by a flow-through system of the coolant. The implementation of the model is carried out analytically using the Karman-Pohlhausen integral relations method. The temperature fields of the column of fuel pellets and the coolant channel are calculated, the temperatures of the side surfaces of the cell are determined, and the effect of radiation heat transfer on the temperature distribution in the cell is estimated
Keywordsfuel element microcell, temperature field, Karman-Pohlhausen method, complex conductive-radiative heat transfer, temperature drop on the fuel element wall, coolant mass average temperature
LanguageRussian
References
  1. O materialah dlya obolochek tvel reaktorov s vodnym teplonositelem sverhkriticheskogo davleniya [Materials for Fuel Element Cladding of Reactors with Supercritical Water Coolant] / Sklyarenko V.A., Zubkov A.G., Zorin V.M., Anikeev A.V. // Novoe v rossijskoj elektroenergetike [New in the Russian Electric Power Industry]. – 2019. – №8. – pp. 33-42 (in Russian).
  2. Zorin V.M., Ustyuhina I.V., Besova A.V. Energeticheskij balans i pokazateli teplovoj ekonomichnosti energobloka atomnoj elektricheskoj stancii [Energy Balance and Indicators of Thermal Efficiency of Power Unit of Nuclear Power Plant] // Vestnik Moskovskogo energeticheskogo instituta. Vestnik MEI [Moscow Power Engineering Institute Bulletin]. 2020. № 2. pp. 34-41 (in Russian).
  3. Kartashov K.V. Pokanal'nyj teplogidravlicheskij raschet aktivnoj zony reaktora VVER-SKD 30 MVt (tepl.) pri nominal'nyh rezhimah raboty [Channel-by-Channel Thermohydraulic Calculation of the 30 MW (th) WWER-SKD Reactor Core at Nominal Operating Modes] //Voprosy atomnoj nauki i tekhniki. Seriya: YAderno-reaktornye konstanty.[Issues of Atomic Science and Technology. Series: Nuclear Reactor Constants] – 2016. – № 3. – pp. 127-131 (in Russian).
  4. Jian Li. Materials Selection for the Canadian Supercritical Water-Cooled Nuclear Reactor Concept // JOM. 2016. V. 68. № 2. (in English]
  5. Ganev I.H. Fizika i raschet reaktora [Physics and Calculation of the Reactor].-Moscow: Energoizdat, 1991. -368 p. (in Russian).
  6. Kolpakov G.N., Selivanikova O.V. Konstrukcii tvelov, kanalov i aktivnyh zon energeticheskih reaktorov [Designs of Fuel Elements, Channels and Cores of Power Reactors]. – Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta [Tomsk: Publishing House of the Tomsk Polytechnic University], 2009. – 118 p. (in Russian).
  7. Kirillov P.L., Bogoslovskaya G.P. Teplomassoobmen v yadernyh energeticheskih ustanovkah [Heat and Mass Transfer in Nuclear Power Plants]. Moscow: Energoatomizdat, 2000. – 456 p.
    (in Russian).
  8. Kirillov P.L., Bobkov V.P., ZHukov A.V., YUr'ev V.S. Spravochnik po teplogidravlicheskim processam v yadernoj energetike, t.2 [Handbook on Thermohydraulic Processes in Nuclear Power, vol. 2]. - M.: IzdAT. 2010 (in Russian).
  9. Semenov V.K., Vol'man M.A. Obosnovanie matematicheskoj modeli teploobmena dlya reaktora s sosredotochennymi parametrami [Substantiation of Mathematical Model of Heat Transfer for a Reactor with Lumped Parameters] // Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. – No4 (17), 2015. – pp. 35–42 (in Russian).
  10. Gorbunov V.A., Andrianov S.G., Konoval'ceva S.S. Ocenka vliyaniya radiacionnogo teploobmena na parametry temperaturnyh polej tvelov razlichnogo konstruktivnogo ispolneniya [Assessment of the Influence of Radiation Heat Transfer on the Parameters of the Temperature Fields of Fuel Elements of Various Designs]. // Vestnik IGEU [ISUE Bulletin]. – 2021. – Vyp. 2. – pp. 23-31
    (in Russian).
  11. Razrabotka modeli po opredeleniyu temperaturnogo polya tvela v dvumernoj postanovke zadachi [Development of a Model for Determining the Temperature Field of a Fuel Element in a Two-Dimensional Formulation of Problem] / V.A. Gorbunov, N.B. Ivanova, N.A. Lonshakov, YA.V. Belov // Izvestiya vysshih uchebnyh zavedenij. YAdernaya energetika [News of Higher Educational Institutions. Nuclear Energy]. - 2019. - № 2. - pp. 174-184 (in Russian).
  12. Dementev B.A. Yadernye energeticheskie reaktory [Nuclear Power Reactors].-Moscow: Energoatomizdat, 1990 (in Russian).
  13. Shlihting G. Teoriya pogranichnogo sloya [Theory of Boundary Layer]. – Moscow: Nauka, 1974
    (in Russian).
Papers52 - 61
URL ArticleURL Article
 Open Article