2022, 1 (42)

Operation of nuclear industry facilities

Article NameConcept of Creating an Integrated Automated Thermal Imaging Control System
AuthorsD.V. Shvets*,1, E.A. Abidova**,2, M.V. Kalashnikov**,3, P.V. Povarov**,4, E.V. Vorobev**,5
Address

*«Rostov nuclear power plant» branch of Rosenergoatom Concern JSC, Volgodonsk, Rostov region,
Russia 347360

**Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University «MEPhI», Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1ORCID iD: 0000-0002-4651-9495

e-mail:svecdima6@gmail.com

2ORCID iD: 0000-0003-0258-5543

WoS Researcher ID: O-1870-2018

e-mail: e-abidova@mail.r

3e-mail: ya.mkalashnikov@ya.ru

4e-mail: povarovp@yandex.ru

5e-mail: xpanr@ya.ru

AbstractThe scope of the research work is a complex of problems related to the processes of collecting and storing the results of thermographic control (TCE) used at nuclear power plants (AS) to assess the technical condition of equipment that directly affects safety. As a solution to eliminate existing problems, a comprehensive automated system for storing and analyzing the results of thermographic control of NPP equipment (CAS TVK) is being developed at the Research Institute of AEM VETI of the MEPhI Research Institute.
KeywordsNuclear power plant, thermal imaging control, equipment, non-contact thermography, non-destructive testing method.
LanguageRussian
References
  1. RD 153-34.0-20.364-00. Metodika infrakrasnoj diagnostiki teplomekhanicheskogo oborudovaniya. [Technique of Infrared Diagnostics of Thermal Mechanical Equipment]. Utverzhden i vveden v dejstvie 01.05.2000. Razrabotan AO «Firma ORGRES». [Approved and put into effect 01.05.2000. Developed by ORGRES company]. Moscow, 2000. Р.50 (in Russian).
  2. Gevlich S.O, Gevlich D.S., Babyak T.G., Vasil'ev K.A., Konovalov S.S., Makarova N.V.,
    Mirzonov M.V. Ocenka tekhnicheskogo sostoyaniya oborudovaniya metodom teplovizionnogo kontrolya [Assessment of Technical Condition of Equipment by Thermal Imaging Control]. Tekhnicheskie nauki – ot teorii k praktike [Technical sciences - from Theory to Practice], 2015 №9(45). P. 86-89 (in Russian).
  3. Vlasov A.B. Analiz rezul'tatov statisticheskoj obrabotki dannyh teplovizionnogo kontrolya [Analysis of Results of Statistical Processing of Thermal Imaging Control Data]. Vestnik MGTU [Bulletin of the MSTU]. 2002г. №2(5). P. 155-160 (in Russian).
  4. Abidova E.A., Solovev V.I., Pugacheva O.YU., Remizov R.I. Vibroakusticheskij monitoring i teplovizionnyj kontrol' pri diagnostirovanii dizelya 12ZV40/48 [Vibroacoustic Monitoring and Thermal Imaging Control in the Diagnosis of Diesel 12ZV40/48]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2016 №2(19). P. 70-76 (in Russian).
  5. Enyushin V.N., Krajnov D.V. O vliyanii izluchatel'noj sposobnosti poverhnosti issleduemogo ob"ekta na tochnost' izmereniya temperatur pri teplovizionnom obsledovanii [Influence of the Emissivity of the Surface of Object under Study on the Accuracy of Temperature Measurement during Thermal Imaging Examination] // Izvestiya KGASU [News of the KSUAE]. 2013 №1(23). P. 99-103 (in Russian).
  6. Eshchenko D.V., Nikitin A.T., Belov O.A. Prakticheskoe primenenie metodov teplovizionnogo analiza i kontrolya [Practical Application of Thermal Imaging Analysis and Control Methods]. Vestnik KSTU [Bulletin оf KSTU]. 2020 №54. P. 6-19 (in Russian).
  7. Yuanbin W., Yang Y., Jieying R. Research on Thermal State Diagnosis of Substation Equipment Based on Infrared Image // Advances in Mechanical engineering, 2019 №4(11). P. 1-14
    (in English).
  8. Caplin A.E., Vasil'ev V.A., Fomin S.A. Sovershenstvovanie kontrolya uzlov mekhanicheskoj chasti elektricheskogo podvizhnogo sostava primeneniem intellektual'noj sistemy teplovizionnogo kontrolya [Improving Control of components of Mechanical Part of Electric Rolling Stock by Using an Intelligent Thermal Imaging Control System]. Izvestiya Peterburgskogo universiteta putej soobshchenij [News of the St. Petersburg University of Railway Communications], 2019 №2(16). P. 268-274 (in Russian).
  9. RD EO 1.1.2.01.0573-2019 Provedenie proverok vypolneniya programm obespecheniya kachestva AO «Koncern Rosenergoatom» i organizacij, vypolnyayushchih raboty i predostavlyayushchih uslugi ekspluatiruyushchej organizacii. Polozhenie [Conducting Inspections of Implementation of Quality Assurance Programs of Rosenergoatom Concern JSC and Organizations Performing Work and Providing Services to the Operating Organization. Position]. Utverzhden prikazom №9/570-P ot 25.04.2019. Razrabotan Departamentom kachestva AO «Koncern Rosenergoatom». [Approved and put into effect 25.04.2019. Developed by the Quality Department of Rosenergoatom Concern JSC]. Moscow, 2019. P. 81 (in Russian).
  10. Mukhopadhyay S. Non-Destructive Testing of Jute–Polypropylene Composite Using Frequency-Modulated Thermal Wave Imaging // Journal of Thermoplastic Composite Materials, 2015 №4(28) P. 548-557 (in English).
  11. Teju V., Bhavana D. An Efficient Object Detection Using OFSA for Thermal Imaging // International Journal of Electrical Engineering & Education, 2020 №1(22). Р. 1-22 (in English).
  12. Gubarev P.V., SHapshal A.S., Kurochkij A.S., Analiz rezul'tatov ispytanij teplovizionnogo kontrolya elektrovozov peremennogo toka [Analysis of Test Results of Thermal Imaging Control of AC Electric Locomotives] // Izvestiya TulGU. Tekhnicheskie nauki. [News of Tula State University. Technical Sciences], 2020 №7. P. 142-147 (in Russian).
  13. Mamontov A.N., Pushnica K.A. Teplovizionnyj kontrol' reaktorov [Thermal Imaging Control of Reactors]. Vestnik BGTU im. V.G. SHuhova [Bulletin of V.G. Shukhov BSTU] 2019, №8 P. 145-151 (in Russian).
  14. Mark L., Kristin D., Kathryn R. Experimental Studies of the Thermal Effects Associated with Radiation Force Imaging of Soft Tissue // Ultrasonic imaging, 2004, № 26. Р. 100-114
    (in English).

 

Papers60 - 66
URL ArticleURL Article
 Open Article