2018-1(26)

Nuclear, radiation and environmental safety

Article NamePerovskite Matrix Form by Using SHS Technology for Immobilization HLW
AuthorsYingyi Jiang
Address

National Research Tomsk Polytechnic University, Institute of Physics Lenin St., 2, Tomsk region, Russia 634050

AbstractSynroc is recognized as the second generation waste form for the disposal of high-level radioactive waste (HLW). In this research, one of the mostly studied Synroc minerals, perovskite (CaTiO3 ), was prepared by self-propagating high-temperature synthesis (SHS). Nd2O3 and Al2O3 were employed as the oxidants with Ni as the reductant. Perovskite was successfully synthesized. The as-synthesized samples were readily solidi-fied with desirable density and Vickers hardness.
KeywordsSHS technology, perovskite matrix form, CaTiO3, high level radioactive waste
LanguageRussian
References

[1] Bish D.L. and Post J.E., editors. 1989. Modern Powder Diffraction. Reviews in Mienralogy, v. 20. Mineralogical Society of America. (in English)

[2] Cullity B.D. 1978. Elements of X-ray diffraction. 2nd ed. Addison-Wesley, Reading, Mass. (in English)

[3] Klug H.P., and Alexander L.E.. 1974. X-ray diffraction procedures for polycrystalline and amorphous materials. 2nd ed. Wiley, New York. (in English)

[4] Moore D.M. and R.C. Reynolds, Jr. 1997. X-Ray diffraction and the identification and analysis of clay minerals. 2nd Ed. Oxford University Press, New York. (in English)

[6] Brady, John B., and Boardman, Shelby J., 1995, Introducing Mineralogy Students to X-ray Diffraction Through Optical Diffraction Experiments Using Lasers. Jour. Geol. Education, Vol. 43, №5, pp. 471–476. (in English)

[7] Brady, John B., Newton, Robert M., and Boardman, Shelby J., 1995, New Uses for Powder X-ray Diffraction Experiments in the Undergraduate Curriculum. Jour. Geol. Education, Vol. 43, №5, pp. 466–470. (in English)

[8] Dutrow, Barb, 1997, Better Living Through Minerals X-ray Diffraction of Household Products, in: Brady, J., Mogk, D., and Perkins D. (eds.) Teaching Mineralogy, Mineralogical Society of America, pp. 349–359. (in English)

[9] Hovis, Guy, L., 1997, Determination of Chemical Composition, State of Order, Molar Volume, and Density of a Monoclinic Alkali Feldspar Using X-ray Diffraction, in: Brady, J., Mogk, D., and Perkins D. (eds.) Teaching Mineralogy, Mineralogical Society of America, pp. 107–118. (in English)

[10] Brady, John B., 1997, Making Solid Solutions with Alkali Halides (and Breaking Them) , in: Brady, J., Mogk, D., and Perkins D. (eds.) Teaching Mineralogy, Mineralogical Society of America, pp. 91–95. (in English)

[11] Perkins, Dexter, III, and Sorensen, Paul, Mineral Synthesis and X-ray Diffraction Experiments, in: Brady, J., Mogk, D., and Perkins D. (eds.) Teaching Mineralogy, Mineralogical Society of America, pp. 81–90. (in English)

[12] Hollecher, Kurt, A Long-Term Mineralogy Practical Exam, in: Brady, J., Mogk, D., and Perkins D. (eds.) Teaching Mineralogy, Mineralogical Society of America, pp. 43–46. (in English)

[13] Chen Song, Li Yuxiang. Research Status of High - efficiency Waste Substrate Curing Substrate [J]. Materials Herald, 2005, №11(19): 53256. (in English)

[14] Ringwood A.E., Kesson S.E.,Ware N.G., et al. Immobilizationof High Level Reactor Waste in Synroc [J]. Nature (London), 1979, №3(278): 2192223. (in English)

[15] Hough A., Marples J.A.C. The Radiation Stability of Synroc :Final Report [Z]. UK: AEA Technology Report Fuel Services, 1993. (in English)

[16] R.C. Ewing, W.J. Weber and F.W. Clinard, Jr. 1994. Radiation effects in nuclear waste forms for high-level radioactive waste[J]. Nuclear Energy, Vol. 29 (in English)

[17] Trocellier P. Chemical Durability of High level Nuclear Wasteforms Trocellier [J] . Ann Chin Scimat, 2001, №26(2):1132130. (in English)

[18] Weber W.J., Ewing R.C., Catlow C.R.A., et al. Radiation Effects on Crystalline Ceramic for the Immobilization of High level Waste and Plutonium [J]. Journal of Materials Research, 1998, №6(13): 143421484. (in English)

[19] Katherinc L.S., Blackford M.G., Lumpkin G.R., et al. Lon Beams Induced Amorphization of Freudenbergite [J]. Journal of Nuclear Materials, 2000, №1(277): 1592168. (in English)

[20] Lumpking G.R., Hart K.P., Mcglinn P.J., et al. Retention of Actinides in Natural Pyrochlores and Ziconolites [J]. RadiochimActa, 1994, №66(67): 469. (in English)

[21] Yang Jianwen, Luo Shanggen, Li Baojun, etc. Pyrolysis green stone artificial rock solidification simulated actinide waste [J]. Atomic Energy Science and Technology, 2001, №35(5): 1042109. (in English)

[22] Zhao Yulong, Li Baojun, Zhou Hui, etc. Study on Simulation of 137Cs Waste by Artificial Rock immobilization [J]. Nuclear Chemistry and Radiation Chemistry, 2005, №3(27): 1522157. (in English)

[23] Zhang Ruizhu. SHS material on immobilization of HLW [J]. Silicate notification, 2008, №3(27): 6592662. (in English)

[24] A. Erdal Osmanlioglu. Immobilization of Radioactive Waste by Cementation with Puried Kaolin Clay [J]. Waste Management, 2002, №5(22): 4812483. (in English)

[25] D. Caurant, O. Majerus, P. Loiseau, I. Bardez, N. Baffier, J.L. Dussossoy, J. Nucl.Mater. 354 (2006) 143e162. (in English)

Papers18 - 23
URL ArticleURL Article
 Open Article