2020-2(35)

Design, manufacturing and commissioning of nuclear industry equipment

Article NameTechnical Theory of Bending of Elastic Rectangular Plate Pivotally Supported on the Perimeter or Pinched Along Two Adjacent Sides
AuthorsA.S. Kravchuk*1, A.I. Kravchuk **2, S.A. Tomilin***3, S.F. Godunov***
Address

*Polytechnic Research Institute, a branch of the Belarusian National Technical University, Independence Avenue, 65, Minsk, Republic of Belarus 220013

**Belarusian State University, Independence Avenue, 4, Minsk, Republic of Belarus 220030

***Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”, Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1ORCID iD: 0000-0002-4730-7769

Wos Researher ID: AAB-7774-2019

e-mail: ask_belarus@inbox.ru

2ORCID iD: 0000-0002-6105-4200

Wos Researher ID: AAB-7880-2019

e-mail: anzhelika.kravchuk@gmail.com

3ORCID iD: 0000-0001-8661-8386

Wos Researher ID: G-3465-2017

e-mail: SATomilin@mephi.ru

AbstractThere is a need to improve methods for calculating elements of engineering structures and equipment for strength and stiffness, which directly affects the safety of nuclear power facilities. For the first time the theory of pure bending of rectangular plates pivotally supported at corner points is generalized to the case of their bending both when the plates are hinged around the perimeter and when a rectangular plate is pinched on two adjacent sides. It should be noted that the obtained system of equilibrium equations does not allow satisfying the equilibrium equations exactly, but only in the sense of the average integral value. However, the authors think this method of solving the deflection problem is much more mathematically and physically justified in comparison with the use of Kirchhoff hypotheses, which lead to contradictions when zero shear forces are assumed to be nonzero, only in order to obtain a deliberately equilibrium equation. The proposed approach allows us to evaluate the deflection of the plate in the case when the main vector of forces applied to the plate can be applied to its geometric center. The article indicates the conditions for the distribution of the transverse load under which it can be assumed that the main vector of forces can be applied to the geometric center of the plate. As examples, the problems of deflection of a rectangular plate under its own weight have been solved both when hinged around the perimeter and when pinched on two adjacent sides.
Keywordsrectangular plate, pure bending, distributed load, technical theory of bending, stress-strain state, stiffness.
LanguageRussian
References

 

  1. Volmir A.S. Gibkie plastinki i obolochki [Flexible Plates and Shells]. Moskva: Gosudarstvennoe izdatel`stvo texniko-teoreticheskoj literatury` [Moscow: State Publishing House of Technical and Theoretical Literature]. 1956. 419 p.
  2. Biderman V.L. Mexanika tonkostenny`x konstrukcij. Statika [Mechanics of Thin-Walled Structures. Statika]. Moskva: Mashinostroenie [Moscow: Mashinostroenie]. 1977. 488 p.
  3. Kravchuk A.S., Kravchuk A.I. K voprosu ob obosnovannoj forme nasledstvennoj vyazkouprugosti s odnim yadrom polzuchesti [The issue of Reasonable Form of Hereditary Viscoelasticity with Single Creep Core]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2019. N4(33). P. 37-42.
  4. Ovchinnikov N.A. Konechno-e`lementny`j analiz napryazhenno-deformirovannogo sostoyaniya e`lementov poperechny`x silovy`x sechenij kuzova avtobusa v e`kspluatacii [Finite Element Analysis of the Stress-Strain State of Elements of Cross-Sections of the Bus Body in Operation]. Inzhenerny`j vestnik Dona [Engineering Bulletin of Don]. 2013. N2. URL: http://www.ivdon.ru/ru/magazine/archive/n2y2013/1614 (01.11.2019).
  5. Fursov V.V., Puryazdankhakh M., Bidakov A.N. Sravnitel`ny`j analiz rezul`tatov teoreticheskix i e`ksperimental`ny`x issledovanij naturnoj arki iz kleenoj drevesiny` [Comparative Analysis of the Results of Theoretical and Experimental Studies of Natural Arches Made of Glued Wood]. Inzhenerny`j vestnik Dona [Don engineering Bulletin]. 2014. N2. URL: http://www.ivdon.ru/ru/magazine/archive/n2y2014/2395 (01.11.2019).
  6. Gorshkov A.G., Starovoitov E.I., Yarovaya A.V. Mexanika sloisty`x vyazkouprugoplasticheskix e`lementov konstrukcij [Mechanics of Layered Viscoelastic Structural Elements]. Moskva: FIZMATLIT [Moscow: FIZMATLIT]. 2005. 576 p.
  7. Shen H.S. Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press. 2009. 280 p.
  8. Rahbar-Ranji A., Bahmyari E. Analysis of Thin Plates with Variable Thickness Resting on Elastic Foundation by Element Free Galerkin Method [Bending Analysis of Thin Plates with Variable Thickness Resting on Elastic Foundation by Element Free Galerkin Method]. Journal of Mechanics [Journal of Mechanics]. 2012. V. 28. Issue 3. P. 479-488. DOI: https://doi.org/
    10.1017/jmech.2012.57.
  9. Kravchuk A.S., Kravchuk A.I., Tomilin S.A., Godunov S.F. Chisty`j izgib nasledstvenno vyazkouprugoplasticheskix pryamougol`ny`x plastin [Pure Bending of Inherently Viscoelastic Rectangular Plates]. Inzhenerny`j vestnik Dona [Don Engineering Bulletin]. 2019. N9. URL: ivdon.ru/ru/magazine/archive/N9y2019/6170 (01.11.2019).
  10. Ermolenko A.V. Raschet krugly`x plastin po utochnenny`m teoriyam [Calculation of Round Plates Based on Refined Theories]. Vestnik Sy`kty`vkarskogo universiteta [Bulletin of Syktyvkar University]. Ser. 1. Issue 6. 2006. P. 79-86.
  11. Sachenkov A.A. Cikl lekcij po teorii izgiba plastin [Lectures on the Theory of Plate Bending]. – Kazan`: KFU [Kazan: KFU]. 2012. 54 p. URL: https://dspace.kpfu.ru/xmlui/bitstream/
    handle/net/21525/05_37_2012_000045.pdf (10.10.2019).
  12. Timoshenko S.P., Voynovsky-Krieger S. Plastinki i obolochki [Plates and Shells]. Moskva: Nauka [Moscow: Nauka]. 1966. 636 p.
  13. Zhemochkin B.N. Teoriya uprugosti [Theory of elasticity]. Moskva: Gostroizdat [Moscow: Gostroizdat]. 1957. 257 p.
  14. Zhuravkov M.A., Starovoitov E.I. Mexanika sploshny`x sred. Teoriya uprugosti i plastichnosti [Mechanics of Continuous Media. Theory of Elasticity and Plasticity]. Minsk: BGU [Minsk: BSU]. 2011. 543 p.
Papers73 - 82
URL ArticleURL Article
 Open Article