2018-4(29)

Design, manufacturing and commissioning of nuclear industry equipment

Article NameAnalysis of Fully Developed Laminar Flow between Parallel Plates with UHF Using ANSYS CFD
AuthorsOdii Ch. J.
Address

National Research Tomsk Polytechnic University, Lenin St., 30, Tomsk, Russia, 634050
e-mail: monoexiton@yahoo.com

AbstractLaminar flow between two parallel placed solid plates with constant heat flux at the edges of the plates, is an idealize way of modelling the flow of coolant between parallel fuel plates commonly used in research Reactors. In this paper, we attempted to validate both the thermal and fluid properties of a fully developed laminar flow with uniform heat flux using ANSYS FLUENT. We used the transport equations to generate the velocity and temperature distribution, the pressure gradient and other profile contours. Then we used ANSYS FLUENT Simulation to generate profile contours, the results of both methods were compared and it was observed that the velocity distribution was parabolic from the Simulation, this was in agreement with the analytical result which predicted that the velocity of the fully developed Laminar flow is parabolic. Also the presure loss and the temperature rise between the inlet and outlet flow were observed to be very small.
KeywordsLaminar, uniform, heat, flux, velocity, pressure, temperature,ANSYS, CFD, Nusselts, number
LanguageEnglish
References

[1]    ME 350, Heat Transfer, Prof. Shollenberger lectures Mechanical Engineering Department California Polytechnic State University. 2017. URL: www.calpoly.edu/~kshollen/ ME350/Examples/Example_14
[2]    MIT Course Notes Spring 2009. URL: mit.edu/snively/www/2_006%20Coursenotes.
[3]    Bonfanti F. et al (1979). Two Phase Pressure Drops in the Low Flow Rate Region. Energia Nucleare. 26 (10). pp 481-492.
[4]    Alina Filip et al. Comparison of Two Phase Pressure Drop Models for Condensing Flows in Horizontal Tubes. Mathematical Modeling in Civil Engineering Vol 10. N 4. 2014.
[5]    Jiri Brada. Mathematical Model of Two Phase Flows. WM, 01 Conference. Tucson. AZ. 2001.
[6]    Chisholm D. (1973). Pressure Gradients Due to Friction during the Flow Evaporating  Two-Phase Mixtures in Smooth Tubes and Channels. International Journal of Heat and Mass Transfer. 16(2). pp 347-358.
[7]    Crowe C.T, (2006), Multiphase Flow Handbook, CRC: Taylor and Francis. Boca Raton. FL.
[8]    Duda J.L and Vrentas J.S (1971). Heat Transfer in a Cylindrical Cavity. Journal of Fluid Mechanics. 45. pp 261-279.
[9]    Satish Kandlikar et Al (2007). Heat transfer and fluid Flow in Minichannels and Mcrochannels. Elsevier publishers Oxford. UK. 576 р.
[10]    Brian D. Storey (2015). Fluid dynamics and Heat Transfer. An Introduction to the Fundamentals. Olin College. 286 р.

Papers31 - 39
URL ArticleURL Article
 Open Article