2021, 4 (41)

Nuclear, radiation and environmental safety

Article NameStoichiometric Mixture of Acetylene and Oxygen in Modeling of Gas Dynamic Instability Development
AuthorsS.I. Gerasimov*,**1, I.A. Kanygin*2, N.V. Nevmerzhitsky*3
Address

*Sarov Physics and Technical Institute of National Research Nuclear University «MEPHI», Nizhny Novgorod region, Sarov, 6 Duchova str., Russia 607186

**Mechanical Engineering Research Institute of Russian Academy of Sciences, Nizhny Novgorod, Belinskogo str., 603024 Russia

1ORCID iD: 0000-0002-6850-0816

WOS Researcher ID: L-2727-2016

e-mail: s.i.gerasimov@mail.ru

2ORCID iD: 0000-0001-8632-2155

e-mail: kanyginiv@yandex.ru

3e-mail: nnevmerzh@gmail.com

 

AbstractTo simulate the processes of hydrodynamic instability, various schemes for accelerating the contact boundaries of different-density media in various structures of impact pipes are used. Such experiments have their own difficulties, for example, associated with the influence of thin diaphragms that delimit the studied media before the start of movement. In this regard, gas-explosive mixtures with the maximum temperature of the reaction products are extremely promising, allowing both to minimize the destruction time of thin films-diaphragms, and to significantly reduce the size of shock tubes for conducting experiments. The paper presents the results of calculations of the thermodynamic parameters of the explosion products of a stoichiometric mixture of 2C2H2+5O2 during detonation in the models of an ideal explosion, ideal detonation, chemical peak. An example of using the explosion products of these mixtures to study the Richtmayer – Meshkov instability is given.
Keywordshydrodynamic instability, thermodynamic equilibrium, stoichiometric mixture, Chapman-Jouget point, internal energy, detonation.
LanguageRussian
References
  1. Andreev S.G., Babkin A.V., Baum F.A. Fizika vzryva: v 2 t. [Explosion Physics: in 2 volumes]. Edited by L.P. Orlenko. Vol. 1. Moscow: Fizmatlit, 2004. 832 p. (in Russian).
  2. Zel'dovich YA.B. [Detonation Theory]. Moscow: Gostekhizdat, 1955. – 268 p.
    (in Russian).
  3. SHal', R. [Detonation Physics]. Fizika bystroprotekayushchih processov [Physics of Fast Processes]; translated from English. Vol. 2. Moscow: Mir, 1971. P. 276-349 (in Russian).
  4. Gubkin K.E. [Blast Wave Propagation]. Mekhanika v SSSR za 50 let [Mechanics in the USSR for 50 Years]. Vol. 2. Moscow: Nauka, 1970. 879 p. (in Russian).
  5. Fizika vzryva [Explosion physics]. Baum F.A. and others; edited by K.P. Stanyukovich. Moscow: Nauka, 1975. 704 p. (in Russian).
  6. Kalashnikov Ya.A. [Physical Chemistry of Substances at High Pressures]. Moscow: High School, 1987. 240 p. (in Russian).
  7. Termodinamicheskie svojstva individual'nyh veshchestv, v chetyrekh tomah : spravochnik [Thermodynamic Properties of Individual Substances, in four volumes: a handbook]. Edited by
    V.P. Glushko. Moscow: Nauka, 1978-1982 (in Russian).
  8.  
  9. Meshkov E.E. [Study of Hydrodynamic Instabilities in Laboratory Experiments]. Sarov: FSUE RFNC-VNIIEF, 2006. 139 p. (in Russian).
  10. Alekhanov Yu.V. [Method for Studying the Interaction of Dispersed Water with a Flame]. Fizika goreniya i vzryva [Combustion and Explosion Physics]. 2006. Vol. 42, No. 1. P. 57 (in Russian).
  11. Zlatin N.A. [Ballistic Installations and their Application in Experimental Research]. Edited by N.A. Zlatin and G.I. Mishin. Moscow: Nauka, 1974. 344 p. (in Russian).
  12. Zacepina M.E. [Modern Quantitative Shadow Method Using Computer Technology]. Nauchno-tekhnicheskie vedomosti Cankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta [Scientific and Technical Statements of the St. Petersburg State Polytechnic University]. 2013. No. 2(171). P. 226-230 (in Russian).
Papers6 - 15
URL ArticleURL Article
 Open Article
Article NameCalculation and Measurement Method of Evaluating the Leakage of Radioactive Nitrogen 16N7 in Steam Generators of Nuclear Reactors of KLT-40 Type
AuthorsA.P. Elokhin*1, S.N. Fedorchenko**2
Address

National Research Nuclear University Moscow Engineering Physics Institute (NRNU MEPhI),
Kashirskoye shosse, 31, Moscow, Russia 115409

1ORCID iD: 0000-0001-6251-1736

WoS ResearcherID: S-9359-2019

e-mail: orumokenoll@yahoo.com

2ORCID iD: 0000-0002-7682-8504

WoS Researcher ID: G-9573-2017

e-mail: elokhin@yandex.ru

 

AbstractThe paper analyzes the leakage of the 16N7 nitrogen radionuclide which occurs in the 1st loop of the KLT-40 reactor which is used at marine transport facilities for various purposes through the steam generator of the nuclear reactor into the second loop into which water is supplied under pressure Pв with a temperature Тв >> 100 °C. Radioactive nitrogen spreads in the vapor phase and goes through a spiral steam line to the turbine under high pressure Pп, creating unfavorable conditions from the point of view of radiation safety. The content of the specified radionuclide in steam can be detected and evaluated by --spectrometry and dosimetry methods, by measuring the volumetric -activity of steam and the dose rate of --radiation when the steam enters the turbine. The analysis of the observed leakage effect was carried out on the basis of using a simple physical and mathematical model that takes into account the transfer of water, vapor media and the transfer of radioactive nitrogen in the vapor phase, which made it possible to indicate the cause and determine the area of leakage on the spiral steam pipeline, which was determined from the condition of vapor equality and water pressures in steam line. The paper specifies the main areas of the steam generator design allowing measurements of radiation characteristics and the necessary instrumental equipment taking into account the physical characteristics of the environments in which this equipment will operate in its readings.
Keywordspower reactor, radionuclide, steam generator, pressure, temperature, dose rate, radiation safety.
LanguageRussian
References
  1. Ivanov E.A., Pyrkov I.V., Khamyanov L.P. Model` nakopleniya radionuklidov v kotlovoj vode parogeneratorov AE`S s VVE`R-440 i -1000 [Model of Radionuclides Accumulation in Boiler Water of Steam Generators of NPP with WWER-440 and -1000]. Atomnaya e`nergiya [Atomic Energy]. 1994. Vol. 77, issue 1. P.58-63 (in Russian). 
  2. Ivanov E.A., Pyrkov I.V., Khamyanov L.P. Metodika diagnostiki protechki teplonositelya pervogo kontura v kotlovuyu vodu parogeneratorov AE`S s VVE`R-440 i -1000 [Diagnostic Technique of the Primary Coolant Leakage into the Boiler Water of Steam Generators of NPPs with WWER-440 and -1000]. Atomnaya e`nergiya [Atomic Energy]. 1994. Vol. 77, issue 1. P.51-58 (in Russian). 
  3. Metodika rascheta protechki teplonositelya pervogo kontura v vodu parogeneratorov AES s VVER-1000: (tipovaya): RD EO 0334-02: rukovodyashchiy document [Methodology for calculating the leakage of the primary coolant into the water of steam generators of NPPs with VVER-1000: (typical): RD EO 0334-02: guidance document]. Ministerstvo Rossiyskoy Federatsii po atomnoy energii, Kontsern «Rosenergoatom» [Ministry of the Russian Federation for Atomic Energy, Rosenergoatom Concern]. Moskva [Moscow]. 2001 (in Russian). 
  4. Normy` radiacionnoj bezopasnosti NRB-99/2009. Sanitarny`e pravila i normativy` SanPiN 2.6.1.2523-09. [Standards of Radiation Safety NRB-99/2009. Sanitary Rules and Regulations SanPiN 2.6.1.2523-09]. URL: https://docs.cntd.ru/document/902170553 (in Russian). 
  5. Gusev N.G., Dmitriev P.P. Kvantovoe izluchenie radioaktivny`x nuklidov. Spravochnik [Quantum Radiation of Radioactive Nuclides. Reference Book]. Moskva: Atomizdat [Moscow: Atomizdat]. 1997. 400 p. (in Russian). 
  6. Deev V.I., Shchukin N.V., Tcherezov A.L. Osnovy` rascheta sudovy`x YaE`U [Basics of Calculating Ship Nuclear Power Plants] Moskva: NIYaU MIFI [Moscow: NRNU MEPhI]. 2012. 256 p. (in Russian).
  7. Nikitin A., Andreev L. Plavuchie atomny`e stancii [Floating nuclear power plants]. Doklad ob``edineniya Bellona [Bellona report]. 2011. 48 p. (in Russian). 
  8. Vorob`yov I.N., Khashchenko A.A. E`ksperimental`ny`e issledovaniya po opredeleniyu znachenij skorosti ispareniya i kipeniya zhidkostej [Experimental Studies to Determine the Values of the Rate of Evaporation and Boiling of Liquids]. URL: https://nauchforum.ru/archive/mnf_nature/2.pdf (reference date 16.01.2019) (in Russian).
  9. Eloxin A.P., Fedorchenko S.N. Metod ocenki protechki radioaktivnogo azota 16N7 v parogeneratorax, ispol`zuemy`x na yaderny`x reaktorax tipa KLT-40 [Method of Assessing the Leakage of Radioactive Nitrogen 16N7 in Steam Generators Used in Nuclear Reactors of the KLT-40 type]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2019. №3(32). P.7-23
    (in Russian). 
  10. Sardanashvili S.A. Raschyotny`e metody` i algoritmy` (truboprovodny`j transport gaza) [Calculation methods and algorithms (pipeline gas transportation)]. Moskva: Neft` i gaz [Moscow: Oil and Gas]. 2005. 577 p. (in Russian). 
  11. Kimel` R.R. Zashhita ot ioniziruyushhix izluchenij. Spravochnik [Protection against Ionizing Radiation. Reference Book]. Moskva: Atomizdat [Moscow: Atomizdat]. 1966. 311 p. (in Russian). 
  12. Eloxin A.P., Fedorchenko S.N. Sposob ocenki protechki radioaktivnogo azota 16N7 v parogeneratorax, ispol`zuemy`x na yaderny`x reaktorax tipa KLT-40 [Method of Assessing the Leakage of Radioactive Nitrogen 16N7 in Steam Generators Used in Nuclear Reactors of the KLT-40 Type]. Patent №2754755 Byul. №25 ot 07.09.2021. Prioritet ot 31.12.2020.[ Patent No. 2754755 Bul. No. 25 dated 09/07/2021. Priority 31.12.2020] (in Russian). 
  13. Eloxin A.P. Metody` i sredstva sistem radiacionnogo kontrolya okruzhayushhej sredy`: monografiya [Methods and Tools of Environmental Radiation Monitoring Systems: monograph]. Moskva: NIYaU MIFI [Moscow: NRNU MEPhI]. 2014. 520 p. (in Russian). 
  14. Eloxin A.P., Ksenofontov A.I., Alalom I., Fedorchenko S.N. Metod e`kspress-ocenki srednej e`nergii spektra g-izlucheniya radionuklidov v usloviyax radiacionny`x avarij v pomeshheniyax speczkorpusa AE`S [A method of Rapid Assessment of the Average Energy of the g-Radiation Spectrum of Radionuclides in Conditions of Radiation Accidents in the Premises of the NPP Special Building]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2018. №2(27). P. 7-15
    (in Russian).
Papers16 - 30
URL ArticleURL Article
 Open Article

Design, manufacturing and commissioning of nuclear industry equipment

Article NameDensity and Coefficient of Thermal Expansion of 12X18H10T Steel in the Temperature Range from 100-850 ˚C for WWER Reactors
AuthorsA.Z. Alhmoud1, A.B. Kruglov2
Address

National Research Nuclear University «MEPhI», Kashirskoye shosse, 31, Moscow, Russia 115409

1ORCID iD: 0000-0002-8213-1455

e-mail: ahmad_homoud@yahoo.com

2e-mail: abkruglov@mephi.ru

AbstractThe article presents the results of studying the density of steel 12Kh18N10T and the coefficient of thermal expansion TEC (α) in the temperature range from 100 to 850˚С. The measurements were carried out using a DIL-405 C dilatometer. Steel 12Kh18N10T will replace traditional TVEL cladding materials, which are made of zirconium material. The cladding made of steel 12X18H10T can be used as a Tolerant fuel. It is shown that the thermophysical properties and accurate dilatometric results of studies of steel 12Kh18N10T make it possible to use steel cladding in fuel assemblies of a VVER reactor. The article presents the results of comparison with similar data from the State Service of Standard Reference Data system.
KeywordsAccident tolerant fuel, density, coefficient of thermal expansion, dilatometer.
LanguageRussian
References
  1. Kirillov, P.L. Teplofizicheskie svojstva materialov yadernoj tekhniki [Thermophysical Properties of Nuclear Engineering Materials]. : IzdAT, 2007 (in Russian).
  2. Leskin S.T., Shelegov A.S., Slobodchuk V.I. Fizicheskie osobennosti i konstrukciya reaktora VVER-1000: Uchebnoe posobie. [Physical Features and Design of the WWER-1000 Reactor: Textbook]. Moscow: NRNU MEPhI, 2011. 116 p. (in Russian).
  3. Denisov V.P., Dragunov Yu.G. Reaktornye ustanovki VVER dlya atomnyh elektrostancij [WWER Reactor Installations for Nuclear Power Plants]. : IzdAT, 2002 (in Russian).
  4. Vygovsky S.B., Ryabov N.O., Semenov A.A., Chernov E.V., Bogachek L.N. Fizicheskie konstrukcionnye osobennosti yadernyh energeticheskih ustanovok s VVER [Physical Design Features of Nuclear Power Plants with VVER]. Moscow: NRNU MEPhI, 2011. 376 p. (in Russian).
  5. Pokhodun A.I., Sharkov A.V. Eksperimental'nye metody issledovanij. Izmereniya teplofizicheskih velichin [Experimental research methods. Measurements of Thermophysical Quantities].
    St. Petersburg: SPb SU ITMO, 2006. 87 p. (in Russian).
  6. Gruppa kompanij NETZSCH [NETZSCH Group of Companies]: official website
    www.netzsch.com.
  7. Tablicy standartnyh spravochnyh dannyh. Stali 12H18N9T i 12H18N10T. Udel'naya teploemkost' i udel'naya ental'piya v diapazone temperatur 400-1380K pri atmosfernom davlenii. GSSSD 32-82 [Tables of Standard Reference Data. Steel 12X18N9T and 12X18N10T. Specific Heat Capacity and Specific Enthalpy in the Temperature Range 400-1380 K at Atmospheric Pressure. Service of Standard Reference Data 32-82]. Moscow: Publishing House of Standards. 1983 (in Russian).
  8. Tablicy standartnyh spravochnyh dannyh. Molibden, monokristallicheskaya okis' alyuminiya, stal' 12H18N10T. Temperaturnyj koefficient linejnogo rasshireniya. GSSSD 59-83. [Tables of Standard Reference Data. Molybdenum, Monocrystalline Aluminum Oxide, Steel 12X18H10T. Temperature Coefficient of Linear Expansion. Service of Standard Reference Data 59-83]. Moscow: Publishing House of Standards. 1984 (in Russian).
  9. Alhmoud A.Z., Kruglov V.B Internal Report at National Research Nuclear University (MEPhI). Russia, Moscow, 2019 (in English).
  10. Massalski, T.B., Okamoto, H., Subramanian, P.R., & Kacprzak, L. (1991). Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990), 2983-2986 (in English).
  11. Savchenko, A.M., Konovalov, Y.V., Laushkin, A.V., & Yuferov, O.I. (2017). Low-Melting Zirconium Alloys. Letters on Materials, 7(3), 229-233 (in English).
  12. Samojlov, O.B. i dr. Bezopasnost' yadernyh energeticheskih ustanovok [Safety of Nuclear Power Plants]. : Energoatomizdat, 1989. 280 p. (in Russian).
Papers31 - 35
URL ArticleURL Article
 Open Article

Operation of nuclear industry facilities

Article NameOperational Experience of Stationary Technical Diagnostics Systems at Novovoronezh NPP
AuthorsG.V.Arkadov*1, V.I. Pavelko*2, V.P. Povarov **3, M.T. Slepov**4
Address

* JSC "Joint Stock Company "Scientific and Technical Center "Diaprom", Koroleva str., 6, Obninsk, Kaluga region, Russia 249031

** Novovoronezh NPP Branch of JSC «Concern Rosenergoatom», Industrial zone Yuzhnaya 1, Novovoronezh, Voronezh region, Russia 396072

1е-mail: skrepka1964@gmail.com

2е-mail: vippvi@mail.ru

3е-mail: povarovvp@nvnpp1.rosenergoatom.ru

4orcid iD: 0000-0001-5563-0526

е-mail: SlepovMT@nvnpp1.rosenergoatom.ru

AbstractTechnical diagnostics has a strong position in the global engineering community. It is included in the standards and recommendations for both existing and projected nuclear power plants. All foreign operating nuclear power plants are more or less equipped with means of technical diagnostics of reactor installations either from the very beginning or during modernization. Regardless of the diagnostic architecture of the automated control system, whether it is Framatom's local project systems or Westinghouse's centralized systems, diagnostic algorithms are universal. The operating organization of Rosenergoatom Concern JSC pays great attention to the development of technical diagnostics tools. Over the past 20 years, almost all Russian power units have been equipped. This contributed both to improving the safety of operation, and ensuring reliability, and extending the life of existing nuclear power plants. The article presents the authors' classification of technical diagnostics systems, the features of their operation at the Novovoronezh NPP site for a 30-year period of time. Complex, high-tech diagnostic systems are moving into operational practice with great difficulty and skepticism. The systems are slowly being filled with diagnostic knowledge, but our demanding foreign customer will undoubtedly require this diagnostic knowledge.
Keywordstechnical diagnostics system, technical diagnostics, technical condition monitoring, block control panel, block control point, abnormal event, vibration monitoring system, free object detection system, humidity leak monitoring system, acoustic leak monitoring system, integrated diagnostics system, anomaly, artificial intelligence, commissioning tests, commissioning measurement system, main circulation circuit, acoustic standing wave, monitoring, control and diagnostics system, software and hardware complex
LanguageRussian
References

 

  1. Gosudarstvennyj Standart Soyuza SSR. Tekhnicheskaya diagnostika. Terminy i opredeleniya. GOST 20911-89 [The State Standard of the USSR. Technical Diagnostics. Terms and Definitions. GOST 20911-89]. Moscow: Publishing House of Standards, 1989. 13 p. (in Russian).
  2. Gosudarstvennyj Standart Soyuza SSR. Pribory vibroizmeritel'nye. Terminy i opredeleniya. GOST 16819-71.[ The State Standard of the USSR. Vibration Measuring Devices. Terms and Definitions. GOST 16819-71]. Moscow: Standartinform, 2010. 8 p. (in Russian).
  3. Gosudarstvennyj Standart Soyuza SSR. Akselerometry nizkochastotnye linejnye. GOST 18955-73. [The State Standard of the USSR. Accelerometers are Low-Frequency Linear. GOST 18955-73]. Moscow: Publishing House of Standards, 1973. 14 p. (in Russian).
  4. Gosudarstvennyj Standart Soyuza SSR. Vibraciya. Terminy i opredeleniya. GOST 24346-80. [State Standard of the USSR. Vibration. Terms and Definitions. GOST 24346-80]. Moscow: Standartinform, 2010. 26 p.
  5. Gosudarstvennyj Standart Soyuza SSR. Vibraciya. Oboznacheniya i edinicy velichin. GOST 24347-80. [State Standard of the USSR. Vibration. Designations and Units of Quantities. GOST 24347-80]. Moscow: Publishing House of Standards, 1986. 6 p. (in Russian).
  6. Gosudarstvennyj Standart Soyuza SSR. Sistema standartov po vibracii. Pribory dlya izmereniya vibracii vrashchayushchihsya mashin. Obshchie tekhnicheskie usloviya. GOST 25275-82. [State Standard of the USSR. System of Vibration Standards. Devices for Measuring Vibration of Rotating Machines. General Technical Conditions. GOST 25275-82]. Moscow: Publishing House of Standards, 1993. 11 p.
  7. Gosudarstvennyj Standart Soyuza SSR. Vibraciya. Dinamicheskie harakteristiki stacionarnyh mashin. Osnovnye polozheniya. GOST 26043-83. [State Standard of the USSR. Vibration. Dynamic Characteristics of Stationary Machines. The Main Provisions. GOST 26043-83]. Moscow: Publishing House of Standards, 1984. 16 р. (in Russian).
  8. Arkadov G.V., Pavelko V.I., Usanov A.I. Vibroshumovaya diagnostika VVER [Vibration Noise Diagnostics of WWER]. Edited by A.A. Abagyan. Moscow: Energoatomizdat, 2004. 344 p.
  9. Arkadov G.V., Pavelko V.I., Finkel B.M. Sistemy diagnostirovaniya VVER [WWER Diagnostic Systems.]. Moscow: Energoatomizdat, 2010. 391 p.
  10. Anikin G.G., Pavelko V.I. Opyt vnedreniya sistem vibrokontrolya na AES s reaktornymi ustanovkami tipa VVER-440 [Experience in the Implementation of Vibration Control Systems at Nuclear Power Plants with WWER-440 Type Reactor Installations]. Heat Engineering. 1999. №6. Р.12-17 (in Russian).
  11. Fedorov A.I., Slepov M.T. Kompleksnye izmereniya diagnosticheskih parametrov oborudovaniya na bloke 1 NVAES-2 v processe opytno-promyshlennoj ekspluatacii [Complex Measurements of Diagnostic Parameters of Equipment at Unit 1 of NWPP-2 during Pilot Operation]. University News. Nuclear Power Engineering. 2017. №3. Р.77-87 (in Russian).
  12. Arkadov G.V. Pavelko, V.I., Slepov M.T. Vibroakustika v prilozheniyah k reaktornoj ustanovke VVER-1200 [Vibroacoustics in the Annexes to the Installation of the Reactor WWER-1200]. Moscow: Nauka, 2018.  469 p. ISBN 978-5-02-040138-9 (in Russian).
  13. Arkadov G. V. Pavelko, V. I., M. T. Slepov SHumovoj monitoring v prilozheniyah k reaktornoj ustanovke VVER-1200 [Noise Monitoring in the Annexes to the Installation of the WWER-1200 Reactor ]. Moscow: Nauka, 2021. 221 p. ISBN 978-5-02-040869-2 (in Russian).
  14. Pavelko V.I., Slepov M.T., Khayretdinov V.U. Opyt provedeniya kompleksnyh izmerenij s ispol'zovaniem raznorodnyh sistem na razlichnyh etapah puska energobloka VVER-1200 [Experience in Conducting Complex Measurements Using Heterogeneous Systems at Various Stages of the WWER-1200 Power Unit Start-Up]. University News. Nuclear Power Engineering. 2016. №4. Р.44-54 (in Russian).
  15. Arkadov G.V., Pavelko V.I., Slepov M.T. Vibroakustika VVER-1200 [WWER-1200 Vibroacoustics]. [Ensuring the Safety of Nuclear Power Plants with WWER: Proceedings of the 11th International Scientific and Technical Conference on May 21-24, 2019 OKB «Gidropress»], Podolsk, Russia. URL: http://www.gidropress.podolsk.ru/files/proceedings/mntk2019/documents/
    mntk2019-061.pdf
  16. Federal'naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru. Federal'nye normy i pravila v oblasti ispol'zovaniya atomnoj energii «Osnovnye trebovaniya k obosnovaniyu prochnosti vnutrikorpusnyh ustrojstv reaktorov tipa VVER» (NP-102-17). Vvedeny prikazom №409 ot 05.10.2017 [Federal Service for Environmental, Technological and Nuclear Supervision. "Basic Requirements for Substantiating the Strength of Internal Devices of WWER Type Reactors" (NP-102-17). Introduced by Order No. 409 of 05.10.2017]. «Codex» Consortium. URL: https://docs.cntd.ru/document/542609712
  17. Bulavin V.V., Gutsev D.F., Pavelko V.I. The Experimental Definition of the Acoustic Standing Waves Series Shapes, Formed in the Coolant of the Primary Circuit of WWER -440 Type Reactor // Progress in Nuclear Energy. 1995. Vol. 29, N 3/4, р.153-170. https://doi.org/10.1016/0149-1970(95)00005-5 (in English).
  18. Bulavin V.V., Gutsev D.F., Pavelko V.I. Some Results of the Vibrations Analysis on the WWER-440 Type Reactor Vessel Top Head and on the Facilities of its Primary Circuit Six Loops // A Symposium on Nuclear Reactor Surveillance and Diagnostics. SMORN VII, June 19-23, 1995, Avignon, France. Session 9 – Vibrations Structures: Modeling and Monitoring. Vol. 2, p.9.5. P. 168-172
  19. Arkadov G.V., Pavelko V.I., Slepov M.T. Vibration Acoustics Applied to WWER-1200 Reactor Plant / Singapore: World Scientific, 2021. – 586 p. – ISBN 978-981-123-466-8. – https://doi.org/10.1142/12220
Papers36 - 46
URL ArticleURL Article
 Open Article
Article NameThe Predictive Diagnosis Based on Hurst Indicator and Logistics Trends
AuthorsV.Ya. Shpicer1, V.V. Krivin2, V.A. Tolstov3
Address

Volgodonsk Engineering-Technical Institute – Branch of NRNU «MEPhI»,

Lenina street, 73/94, Volgodonsk, Russia 347360

1ORCID iD: 0000-0002-5051-5091

e-mail: shpitser@mephi.ru

2ORCID iD: 0000-0003-0903-0786

WoS Researcher ID: E-2267-2018

e-mail: vvkrivin@mephi.ru

3ORCID iD: 0000-0001-7144-5195

WoS Researcher ID: F-1032-2017

e-mail: v-tolstov-2017@mail.ru

AbstractThe article presents the results of identifying pre-failure conditions. The results based on fractal analysis and nonparametric statistics. The NPP equipment units are highly reliable systems for long life cycle. These systems are characterized by slow graduating failures. This happens due to the accumulation of irreversible damage. Standard information measuring systems supply time series. They are traditionally processed by parametric methods. The processing of experimental data can be automated for industrial monitoring of NPP equipment parameters
Keywordsdiagnostics, prediction, controlled parameters, data processing, degradation, Hurst indicator, observation, monitoring, logistic methods, pre-failure conditions, standard intervals, probability distribution.
LanguageRussian
References
  1. RD 26.260.004-91. Metodicheskie ukazaniya. Prognozirovanie ostatochnogo resursa oborudovaniya po izmeneniyu parametrov ego texnicheskogo sostoyaniya pri e`kspluatacii. [RD 26.260.004-91. Methodical Instructions. ]. Utverzhdyon v Koncern Himneftemash [Introduced in Khimneftemash Concern]. URL: https://meganorm.ru/Index2/1/4294847/4294847460.htm (reference date 09.09.2021)
    (in Russian).
  2. GOST R ISO 13381-1-2016. Kontrol` sostoyaniya i diagnostika mashin : nacional`ny`j standart Rossijskoj Federacii. Chast` 1. Obshhee rukovodstvo [Condition Monitoring and Diagnostics of Machines. Machine Condition Prognosis. Part 1. General Guidelines]. Izdanieoficial'noe : utverzhdyon i vveden v dejstvie Prikazom Federal'nogo agentstva po tekhnicheskomu regulirovaniyu i metrologii ot 24 noyabrya 2016 g. N 1770-st : vvedyon vpervye : data vvedeniya 2017-12-01 / podgotovlen Otkrytym akcionernym obshchestvom «Nauchno-issledovatel'skij centr kontrolya i diagnostiki tekhnicheskih sistem».[Official edition. Approved and put into effect by the Order of the Federal Agency for Technical Regulation and Metrology of November 24, 2016 N 1770-st. Introduced for the first time. Date of introduction 2017/12/01. Prepared by the Open Joint Stock Company «Scientific Research Center for Control and Diagnostics Technical Systems»]. Moskva: Standartinform [Moscow: Standartinform]. 2017. URL: https://docs.cntd.ru/
    document/1200142489 (reference date 09.09.2021) (in Russian).
  3. Sy`soev Yu.S., Sal`nikov A.A., Beketov V.G. et al. Prognozirovanie sostoyanij texnologicheskix ob``ektov na osnove tekushhego monitoringa znachenij ix parametrov s illyustraciej na primere oborudovaniya AE`S [The Prediction of the Technological Objects Conditions Based on the Current Monitoring of their Parameters’ Values with an Illustration Using the Example of NPP Equipment]. Izmeritel`naya texnika [The Measuring Technology]. 2016. №4. P.3-7 (in Russian).
  4. Muxametzyanov I.Z., Majskij R.A., Yantudin M.N. Metodicheskie osobennosti primeneniya stoxasticheskix pokazatelej pri analize potokovy`x danny`x prirodny`x ili texnicheskix processov i ob``ektov [The Methodological Features of Stochastic Indicators in the Analysis of Natural Streaming or Technical Processes and Facilities]. E`lektronny`j nauchny`j zhurnal «Neftegazovoe delo» [The electronic scientific journal «Oil and Gas Business»]. 2015. № 5. P.446-492. ISSN 1813-503X. URL: https://e.lanbook.com/journal/issue/298795 (reference date: 28.09.2021)
    (in Russian).
  5. Kalush Yu.A., Loginov V.M. Pokazatel` Xyorsta i ego skry`ty`e svojstva [The Hirst Indicator and its Hidden Properties]. Novosibirsk. Sibirskij zhurnal industrial`noj matematiki [The Siberian Journal of Industrial Mathematics]. 2002. №.4. Vol.5. P.29-37 (in Russian).
  6. Kirichenko L.O. Sravnitel`ny`j analiz statisticheskix ocenok pokazatelya Xersta [The Comparative Analysis of Statistical Estimates of the Hurst Indicator]. Xar`kov. Vestnik NTU [The NTU Bulletin]. 2010. №21. P.88-95 (in Russian).
  7. Lyapunova E.A., Petrova A.N., Brodova I.G. et al. Issledovanie morfologii mnogomasshtabny`x defektny`x struktur i lokalizacii plasticheskoj deformacii pri probivanii mishenej iz splava A6061 [The Investigation of the Morphology of Multiscale Defect Structures and Localization of Plastic Deformation During the Penetration of Targets from the A6061 Alloy]. Saint-Petersburg. Pis`ma v zhurnal texnicheskoj fiziki [Letters to the Journal of Technical Physics]. 2012. V.38. №1. P.13-20 (in Russian).
  8. Shpicer V.Ya. Modelirovanie degradacii oborudovaniya atomny`x stancij [The Modeling of the NPP Equipment Degradation]. Novocherkask. Yuzhno-Rossijskij gosudarstvenny`j politexnicheskij universitet (NPI) im. M.I. Platova [Novocherkask: South-Russian State Polytechnic University (NPI) named after M.I. Platova]. Izvestiya vuzov. E`lektromexanika [University News. Electromechanics], 2004. 176 p. (in Russian).
  9. Arnold V.I. Teoriya katastrof [Catastrophe theory]. Moskva: Editorial URSS [Moscow. Editorial URSS]. 2007. 136 p. (in Russian).
  10. Ostreykovsky V. A. Teoriya nadyozhnosti [The Theory of Reliability]. Moskva: Vysshaya shkola [Moscow. Higher School] 2003. 463 p. (in Russian).
  11. Cyganek B., Socha K. Computationally efficient methods of approximations of the S-shape functions for image processing and computer graphics tasks. Image Processing & Communications. 2012. Vol.16. № 1-2. P.19-28 (in English).
  12. Drozdyuk, A. V. Logisticheskaya krivaya [The Logistic Curve]. Toronto. Choven, 2019. 270 p.
    (in Russian).
  13. Pavlov, V.D. Programmny`j kompleks, metody` modelirovaniya i prognozirovaniya mnogokomponentny`x modelej dinamicheskix ryadov s ispol`zovaniem funkcii Ramseya [The Software Package, Methods of Modeling and forecasting Multicomponent Time Series Models Using the Ramsey Function]. Special`nost` 05.13.18 «Matematicheskoe modelirovanie, chislenny`e metody` i kompleksy` programm». Avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata texnicheskix nauk. [Specialty 05.13.18 "Mathematical Modeling, Numerical Methods and Program Complexes": thesis abstract for the PhD degree in Engineering]. Samara: Samarskij gosudarstvennyj aerokosmicheskij universitet imeni akademika S.P. Koroleva [Samara: Korolev Samara State Aerospace University]. 2009. 20 p. (in Russian).
  14. Gneushev A.N., Gurchenkov A.A., Moroz I.I. Pryamoj metod ocenki parametrov dvusegmentnoj kusochno-logisticheskoj krivoj [Direct Method for Estimating the Parameters of a Two-segment Piecewise Logistic Curve]. Vestnik MGTU im. N.E`. Baumana. Seriya «Priborostroenie» [Bulletin of Bauman MGTU. «Instrument Making» series]. 2018. № 1(118). P.31-48 (in Russian).
Papers47 - 55
URL ArticleURL Article
 Open Article

undefined

Article NameIssue of Compliance Control Efficiency at Nuclear Industry Enterprises in Economic Crisis Conditions
AuthorsM.V. Golovko*1, A.A. Lapkis**2, S.А. Myasoedov***3
Address

* Non-state accredited non-profit private educational institution of higher education “Academy of Marketing and Social and Information Technologies – IMSIT, Zipovskaya St.5, Southern Federal District, Krasnodar Region, Krasnodar, Russia 350010

**Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”, Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

***Amur State University, Ignatievskoe highway 21, Blagoveshchensk, Amur region, Russia 675027

1ORCID iD: 0000-0002-4835-9800

WoS Researcher iD: J-2461-2016

e-mail: golovko178@mail.ru

2ORCID ID: 0000-0002-9431-7046

e-mail: AALapkis@mephi.ru

 3ORCID iD: 0000-0002-5636-3834

e-mail: myasoedov8@mail.ru

AbstractThe article considers the features of the uranium mining industry development in the context of market fluctuations. The economic factors contributing to the spread of nuclear energy and causing the demand for the products of the uranium mining industry are presented. The competitive advantages of countries in the production and supply of fuel for nuclear power plants are revealed. The conclusion is made about the significant development potential of the Russian Federation (SC "Rosatom") at all stages of the nuclear fuel cycle associated with high-tech repartition of uranium raw materials and nuclear generation. The problem of high capital investments and a long-time lag from the moment of exploration of the deposit to the commissioning of production facilities of the uranium mining industry enterprises is noted. The most profitable investment schemes in the industry are considered taking into account government support.
Keywordsuranium mining industry, nuclear energy, nuclear power plants, fuel elements, fuel cycle, uranium price, State Atomic Energy Corporation Rosatom.
LanguageRussian
References
  1. Ferraris M., Florio M. Public Enterprises in a Global Perspective in the Last Decade. Milan, 2015 (in English).
  2. Dement'ev V.E. O haraktere rossijskoj «dogonyayushchej modernizacii» i ee institucional'nom obespechenii [Nature of Russian «Catch-Up Modernization» and its Institutional Support]. Rossijskij ekonomicheskij zhurnal [Russian Economic Journal]. 2005. №2. P. 21-29 (in Russian).
  3. Kolomiets M.A., Lapkis A.A. and Tsuverkalova O.F. Decision Support System for WWER-1000 Reactivity Management // Journal of Physics: Conference Series, Volume 1488, International Scientific Conference on Electronic Devices and Control Systems (EDCS 2019) 20-22 November 2019, Tomsk, Russia (in Russian).
  4. Plotnikov V., Golovko M., Fedotova G., Rukinov M. (2020), «Ensuring National Economic Security through Institutional Regulation of the Shadow Economy», in Lecture Notes in Networks and Systems. Vol. 87. Р. 342-351 (in English).
  5. «Rosenergoatom» razrabatyvaet cifrovye platformy i instrumenty dlya AES [Rosenergoatom Develops Digital Platforms and Tools for Nuclear Power Plants]. URL: https://strana-rosatom.ru/- (reference date 12.02.2021) (in Russian).
  6. Myasoedov S.A. Ocenka urovnya ustojchivogo ekonomicheskogo razvitiya i ekonomicheskaya bezopasnost' otraslej mineral'no-syr'evogo kompleksa [Assessment of Level of Sustainable Economic Development and Economic Security of Mineral Resource Complex Industries]. Ekonomicheskie nauki [Economic Sciences]. – 2018. – № 12(169). – P. 65-69 (in Russian).
  7. Mikhailovsky А.А., Melekhin E.S. Povysheniye effektivnosti uranodobyvayushchikh predpriyatiy v usloviyakh syr'yevogo defitsita [Improving the efficiency of uranium mining enterprises in conditions of raw materials shortage]. Mineral'nyye resursy Rossii. Ekonomika i upravleniye [Mineral resources of Russia. Economics and Management]. 2019. №1(164). P.46-53 (in Russian).
  8. Eralin Zh.M., Goncharenko S.N. Razrabotka modeley resheniya klyuchevykh problem strategicheskogo razvitiya uranodobyvayushchego predpriyatiya [Development of models for solving key problems of strategic development of a uranium mining enterprise]. Gornyy informatsionno-analiticheskiy byulleten' (nauchno-tekhnicheskiy zhurnal) [Mining information and analytical bulletin (scientific and technical journal)]. 2019. №4. P. 199-208 (in Russian).
  9. Andreev L. Ob ekonomike rossijskoj yadernoj elektroenergetiki [Economics of the Russian Nuclear Power Industry]. Doklad ob"edineniya Bellona [Bellona report], 2011. URL: https://network.bellona.org/content/uploads/sites/4/2015/07/fil_economy_05_BW_obl1.pdf (reference date 12.09.2021) (in Russian).
  10. UXC URANIUM U3O8 FUTURES (CONTINUOUS: CURRENT CONTRACT IN FRONT). URL: https://ru.tradingview.com/symbols/COMEX-UX1!/ (in English).
  11. Svyatetsky V.S., Solodov I.N. Strategiya tekhnologicheskogo razvitiya uranodobyvayushchey otrasli Rossii [The strategy of technological development of the uranium mining industry in Russia]. Gornyy zhurnal [Mining Journal]. 2015. №7. Р.68-77 (in Russian).
  12. World Nuclear Association, February 2018, «World Nuclear Power Reactors & Uranium Requirements», URL:http://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-and-uranium-requireme.aspx (in English).

 

Papers56 - 65
URL ArticleURL Article
 Open Article
Article NameSocial and Economic Aspects of Tourism Marketing in the Chernobyl Exclusion Zone
AuthorsT.S. Popova
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”, Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

ORCID iD: 0000-0002-0554-2672

e-mail: tanya930@rambler.ru

 

AbstractThe paper considers the main provisions of the impression economy, the greatest potential of which is revealed in the tourism business. Selling travelling emotions, adventure hobbies and new knowledge is increasingly economically profitable, and travel companies are expanding their list of offers. Recently, many new, sometimes very strange, types of tourism have appeared. The development of technological progress in the twentieth century was the impetus for the development of an unusual type of tourism – industrial. A separate subspecies of industrial tourism is nuclear. More than a decade after the accident, the Chernobyl zone remains uninhabitable. But even so, it has a future. Officials and tour operators agree that tourism in Chernobyl is not only considerable economic benefits for the country, but also an opportunity to tell the world your story.
Keywordsimpression economy, social and cultural aspect of nuclear energy, safety principles, tourism marketing, nuclear tourism, Chernobyl NPP.
LanguageRussian
References
  1. Popova T.S. Voronov A.A. K voprosu o sushchnosti i soderzhanii ekologicheskogo marketinga. [The Question of the Essence and Content of Environmental Marketing]. Vestnik nauchnyh konferencij [Bulletin of Scientific Conferences]. 2020. № 2-3(54). P. 67-69 (in Russian).
  2. Masharipova H. Marketing v turizme [Marketing in Tourism]. Alleya nauki [Alley of Science]. 2021. T. 1. № 6(57). P. 323-327 (in Russian).
  3. Gataullina, S. Y. Upravlenie effektivnost'yu razvitiya ekologicheskogo turizma v Osobo Ohranyaemyh Prirodnyh Territoriyah [Management of Efficiency of Development of Ecological Tourism in Protected Natural Areas]. Prakticheskij marketing [Practical Marketing]. 2021. № 5(291). P.3-9. DOI 10.24412/2071-3762-2021-5291-3-9 (in Russian).
  4. Glumova, J. G. Klyuchevye osobennosti turisticheskogo marketinga [Key Features of Tourist Marketing]. Prakticheskij marketing [Practical Marketing]. 2020. № 11(285). P. 9-14. – DOI: 10.24412/2071-3762-2020-11285-9-14 (in Russian).
  5. Rudenko, V. A., Popova, T. S., Gorlachev, P. V. Upravlenie territoriyami v konkurentnoj rynochnoj srede: uchebnoe posobie [Territory Management in a Competitive Market Environment: textbook]. Krasnodar: «Innovation» Publishing House, 2021. 270 p. ISBN 978-5-00179-056-3 (in Russian).
  6. Rudenko, V. A. Vystraivanie partnerskih otnoshenij atomnoj otrasli s obshchestvennost'yu: istoriya voprosa i perspektivy razvitiya [Building Partnerships of the Nuclear Industry with the Public: the History of the Issue and Prospects for Development]. Global'naya yadernaya bezopasnost' [Global nuclear safety]. 2020. № 2(35). P. 131-141 (in Russian).
  7. Denisov, A. E. Marketingovaya deyatel'nost' kompanii v sfere turizma [Marketing Activity of the Company in the Field of Tourism]. Prakticheskij marketing [Practical Marketing]. 2018. № 4(254). P.10-13 (in Russian).
  8. Tappaskhanova E. O. Teoreticheskie i prakticheskie aspekty povysheniya kachestva turisticheskih uslug [Theoretical and Practical Aspects of Improving the Quality of Tourist Services]. Prakticheskij marketing [Practical Marketing]. 2016. № 8(234). Р.25-31 (in Russian).
  9. Borodina, N.V. Chernobyl'skaya AES – 35 let so dnya [Chernobyl Nuclear Power Plant - 35 Years since the Catastrophe]. Aktual'nye voprosy pozharnoj bezopasnosti [Topical Issues of Fire Safety]. 2021. № 2(8). P. 72-81 (in Russian).
  10. Afanasyev O. E. Ekonomika vpechatlenij kak trend v turistsko-ekskursionnoj industrii [Economy of Impressions as a Trend in the Tourist and Excursion Industry]. Sovremennye problemy turizma i servisa : sbornik statej nauchnyh dokladov po itogam Vserossijskoj nauchnoj konferencii, Moskva, 24 aprelya 2018 goda [Modern Problems of Tourism and Service: Collection of Articles of Scientific Reports on the Results of the All-Russian Scientific Conference, Moscow, April 24, 2018]. Edited by N.A. Platonova, O.E. Afanasyev. Moskva: RUSAJNS [Moscow: RUSAINS], 2018. Р. 6-11 (in Russian).
  11. Selyukh D. A. Atomnyj turizm [Atomic Tourism]. Prirodnoe i kul'turnoe nasledie: mezhdisciplinarnye issledovaniya, sohranenie i razvitie : Kollektivnaya monografiya po materialam VII Mezhdunarodnoj nauchno-prakticheskojkonferencii, Sankt-Peterburg, RGPU im.A.I.Gercena, 24-25 oktyabrya 2018 goda [Natural and Cultural Heritage: Interdisciplinary Research, Conservation And Development: A collective monograph based on the materials of the VII International Scientific and Practical Conference, St. Petersburg, A.I.Herzen State Pedagogical University, October 24-25, 2018]. Sankt-Peterburg : Rossijskij gosudarstvennyj pedagogicheskij universitet im. A.I. Gercena [St. Petersburg: A.I. Herzen Russian State Pedagogical University]. 2018. Р.338-340 (in Russian).
  12. Rozental' O. M. «Ekonomika vpechatlenij»: blago ili vred? [Impression Economy: Benefit or Harm]. Kontrol' kachestva produkcii [Product Quality Monitoring]. 2017. № 6. P.1 (in Russian).
Papers66 - 72
URL ArticleURL Article
 Open Article
Article NameManagement Commitment to the Goals of Production Safety as a Formation Factor of Integrated Safety of Industrial Enterprise Management System
AuthorsI.E. Lyskova
Address

The Komi Republican Academy of State Service and Administration,

Syktyvkar, Russia 167000

ORCID iD: 0000-0003-2748-2794

WoS Researher ID: T-1644-2018

e-mail: IrinaLyskova@mail.ru

AbstractThe paper actualizes the political, social and economic, cultural foundations of the formation of a culture of industrial safety of industrial enterprises. The structural and substantive aspects of the management's commitment to the goals of industrial safety are revealed. A general analysis of the current regulatory framework defining the methodological foundations for the formation of an integrated safety management system of industrial enterprises in the Russian Federation is proposed.
Keywordsproduction safety, production safety culture, management commitment to industrial safety objectives, integrated safety management system, industrial safety management, quality management, environmental management, occupational safety and health management, production safety culture management.
LanguageRussian
References
  1. Lyskova I.E. Vnedrenie modelej ustojchivogo razvitiya i berezhlivogo proizvodstva v sistemu e`kologicheskoj i social`noj bezopasnosti sovremennoj organizacii (na primere Goskorporacii «Rosatom») [The Introduction of Models of Sustainable Development and Lean Production in Ecological and Social Safety System in Modern Organization (Using the Example of «Rosatom» State Corporation]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2019. No.4(33). Р.85-95 (in Russian).
  2. Lyskova I.E. Strategicheskie celi proizvodstvennoj bezopasnosti promy`shlenny`x predpriyatij v aspekte prioritetov nacional`noj i e`konomicheskoj bezopasnosti Rossijskoj Federacii [Strategic Objectives of Industrial Enterprises’ Production Safety in Aspect of National and Economic Security Priorities of Russian Federation]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2021. No.1(38). Р. 94-109 (in Russian).
  3. Lyskova I.E. Osnovny`e napravleniya formirovaniya i razvitiya kul`tury` bezopasnosti v Rossijskoj Federacii [The Main Directions of Forming and Development of Safety Culture in the Russian Federation]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2021. No.2(39). Р. 84-100 (in Russian).
  4. Rudenko V.A, Popova T.S., Yu.A. Evdoshkina Obespechenie vy`sokogo urovnya kul`tury` bezopasnosti pri e`ksporte yaderny`x e`nergeticheskix texnologij [Providing a High Level of Safety Culture when Exporting Nuclear Power Technologies]. Global`naya yadernaya bezopasnost` [Global Nuclear Safety]. 2021. No.2(39). Р.101-109 (in Russian).
  5. Mashin V.A. Sovremennye osnovy koncepcii kul'tury bezopasnosti [Modern Foundations of Safety Culture Concept] Elektricheskie stancii [Power Stations]. 2014. No10. Р. 2-10 (in Russian).
  6. Mezhdunarodnaya konsul'tativnaya gruppa po yadernoj bezopasnosti. Kul'tura bezopasnosti. Seriya izdanij po bezopasnosti [International Advisory Group on Nuclear Safety. Safety culture. Safety Series]. №75-INSAG-4. MAGATE, Vena, 1991. 52 р. URL: https://www-pub.iaea.org/MTCD/Publications/PDF/ (reference date 28.11.2021) (in Russian).
  7. Mezhdunarodnaya konsul'tativnaya gruppa po yadernoj bezopasnosti. Klyuchevye voprosy praktiki povysheniya kul'tury bezopasnosti. [International Advisory Group on Nuclear Safety. Key Issues in the Practice of Improving Safety Culture] INSAG-15. MAGATE, Vena, 2015. 32 р. URL: https://www-pub.iaea.org/MTCD/Publications/PDF/ (reference date 28.11.2021) (in Russian).
  8. Fundamental Safety Principles: IAEA Safety Standards No SF-1. IAEA. 2006. 37p.; Applications of the Management System for Facilities and Activities Safety Guide: IAEA Safety Standards Series No GS-G-3.1. IAEA. 2006. 116p. (in English).
  9. The Management System for Nuclear Installations. Safety Guide: IAEA Safety Standards Series No GS-G-3.5. IAEA. 2009. 157 p. (in English).
  10. Adizes I.S. Upravlyaya izmeneniyami. Kak e`ffektivno upravlyat` izmeneniyami v obshhestve, biznese i lichnoj zhizni [Mastering Change. The Power of Mutual Trust and Respect in Personal Life, Family Life, Business and Society]. Moscow. Mann, Ivanov and Ferber. 2016. 368p.
    (in Russian).
  11. Goleman D. E`mocional`ny`j intellekt. Pochemu on mozhet znachit` bol`she chem IQ. [Emotional Intelligence. Why It Can Matter More Than IQ]. Moscow. Mann, Ivanov and Ferber. 2017. 544p.
    (in Russian).
  12. Cokins G. Upravlenie rezul`tativnost`yu: Kak preodolet` razry`v mezhdu ob``yavlennoj strategiej i real`ny`mi processami [Perfomance Management. Finding the Missing Pieces (to Close the Intelligence Gap)]. Moscow: Al’pina Pablisher [Alpina Publisher]. 2016.316p. [in Russian].
  13. Romanchenko L.N. Formirovanie klyuchevyh kompetencij kul'tury bezopasnosti zhiznedeyatel'nosti v processe obucheniya, kak sostavlyayushchaya ekonomicheskoj bezopasnosti strany [Formation of Key Competencies of Life Safety Culture in the Learning Process, as a Component of Country Economic Security]. Aktual'nye voprosy bezopasnosti zhiznedeyatel'nosti v sovremennyh usloviyah [Topical Issues of Life Safety in Modern Conditions]. Moskva: Finansovyj universitet pri Pravitel'stve RF [Moscow: Financial University under the Government of the Russian Federation]. 2019. Р.171-183 (in Russian).
  14. Principles for a Strong Nuclear Safety Culture. Guideline WANO GL 2006-02. WANO. 2006. 14p. (in English).
  15. Marr B. Klyuchevy`e pokazateli e`ffektivnosti. 75 pokazatelej, kotory`e dolzhen znat` kazhdy`j menedzher [Key Performance Indicators. The 75 Measures Every Manager Needs to Know]. Moskva: BINOM. Laboratoriya znaniy. [Moscow: BINOM. Knowledge Laboratory]. 2014. 340 p. (in Russian).
  16. Sherwood D. Sistemnoe my`shlenie dlya rukovoditelej: praktika resheniya biznes-problem [A Manager’s Guide to Applying Systems Thinking]. Moscow: Al’pina Pablishe [Alpina Publisher]. 2016. 300p. (in Russian).
  17. GOST R 58542-2019 Nacional'nyj standart Rossijskoj Federacii. Integrirovannye sistemy menedzhmenta. Rukovodstvo po prakticheskomu primeneniyu [GOST R 58542-2019 National Standard of the Russian Federation. Integrated Management Systems. Practical Application Guide]. Moscow: Standartinform, 2019. 16р. (in Russian).
  18. O promyshlennoj bezopasnosti opasnyh proizvodstvennyh ob"ektov: Federal'nyj zakon RF ot 21 iyulya 1997 g. № 116-FZ (red. ot 29 iyulya 2018 g.) Industrial Safety of Hazardous Production Facilities: Federal Law of the Russian Federation of July 21, 1997 No. 116-FL (as amended on July 29, 2018)// Sobranie zakonodatel'stva RF [Collection of Legislation of the Russian Federation], 28.07.1997, №30, st.3588 (in Russian).
  19. GOST R ISO 9001-2015 Nacional'nyj standart Rossijskoj Federacii Sistemy menedzhmenta kachestva. Trebovaniya [GOST R ISO 9001-2015 National Standard of the Russian Federation Quality Management Systems. Requirements]. Moscow: Standartinform, 2015. 32р. (in Russian).
  20. GOST R ISO 14001-2016 Nacional'nyj standart Rossijskoj Federacii Sistemy menedzhmenta kachestva. Trebovaniya [GOST R ISO 14001-2016 National Standard of the Russian Federation Quality Management Systems. Requirements]. Moscow: Standartinform, 2016. 38 р. (in Russian).
  21. Krylov K.D. 100-letie MOT i prognozy v sfere truda [ILO Centenary and World of Work Forecasts]. Vestnik universiteta imeni O.E. Kutafina (MGYUA) [Bulletin of the Kutafin University (Moscow State Law Academy)]. 2019. No.11. Р.54-64 (in Russian).
  22. Seregina L.V. Pravo na bezopasnyj trud s uchyotom vyzovov nauchno-tekhnologicheskogo razvitiya Rossijskoj Federacii [The Right to Safe Work, Taking into Account the Challenges of Scientific and Technological Development of the Russian Federation]. ZHurnal rossijskogo prava [Journal of Russian Law]. 2020. No.6. Р.79-94 (in Russian).
  23. GOST R 54934-2012/OHSAS 18001:2007 Nacional'nyj standart Rossijskoj Federacii. Sistemy menedzhmenta bezopasnosti truda i ohrany zdorov'ya. Trebovaniya [National Standard of the Russian Federation. Occupational Safety and Health Management Systems. Requirements]. Moscow: Standartinform, 2012. 47 р. (in Russian).
  24. GOST R 12.0.007-2009. Nacional'nyj standart Rossijskoj Federacii. Sistema standartov bezopasnosti truda. Sistema upravleniya ohranoj truda v organizacii. Obshchie trebovaniya po razrabotke, primeneniyu, ocenke i sovershenstvovaniyu [National Standard of the Russian Federation. Occupational Safety Standards System. Occupational Safety Management System in the Organization. General Requirements for Development, Application, Evaluation and Improvement]. Moscow: Standartinform, 2012. 77р. (in Russian).
  25. Schein E.H. Organizacionnaya kul`tura i liderstvo [Organizational Culture and Leadership]. Sank-Peterburg: Piter [Saint Petersburg: Peter]. 2002. 336 p. (in Russian).
  26. Luthans F. Organizacionnoe povedenie [Organizational Behavior]. Moscow: INFRA-M, (in Russian).
  27. GOST R 57133-2016 Nacional'nyj standart Rossijskoj Federacii. Menedzhment organizacionnoj kul'tury i znaniya. Rukovodstvo po nailuchshej praktike [GOST R 57133-2016 National Standard of the Russian Federation. Organizational Culture and Knowledge Management. Best Practice Guide]. Moscow: Standartinform, 2016. 75 р. (in Russian).
  28. GOST R 57132-2016 Nacional'nyj standart Rossijskoj Federacii. Menedzhment znanij. Vzaimosvyaz' s organizacionnymi funkciyami i disciplinami. Rukovodstvo po nailuchshej praktike [GOST R 57132-2016 National Standard of the Russian Federation. Knowledge Management. Relationship with Organizational Functions and Disciplines. Best Practice Guide]. Moscow: Standartinform, 2016. 48 р. (in Russian).
Papers73 - 91
URL ArticleURL Article
 Open Article