2022, 2 (43)

Nuclear, radiation and environmental safety

Article NameWays of Energy Supply in the Republic of Armenia
AuthorsMarine T. Hakobyan, Alexander I. Ksenofontov
Address

1 National Research Nuclear University «MEPhI», 31, Kashirskoye shosse, Moscow, Russia 15409

2 AAEC CJSC, Metsamor, Armenia

1marine_h@mail.ru, ORCID iD: 0000-0001-8710-5734, WoS Researcher ID: H-9997-2022

2AIKsenofontov@mephi.ru, ORCID iD: 0000-0002-6864-9805, WoS Researcher ID: H-1833-2017

AbstractThis article discusses the only Armenian nuclear power plant operation in Transcaucasia, the energy demand of the population of the Republic of Armenia, the restoration and secondary launch of nuclear power plants, environmental impact assessment, and prospects for the development of nuclear energy in the country. Data on personnel dose loads, emissions and discharges of nuclear power plants, soil and water pollution in the monitoring area for 2020 are presented.
KeywordsNPP, assessment of the impact of nuclear energy on the environment, effective radiation doses, radiation monitoring, radiation safety.
LanguageRussian
References
  1. , V.E. Yaderniy reaktori na elektrostanciyah [Nuclear Reactors in Power Plants]. Moscow: Atomizad, 1977. 208 p. (in Russian).
  2. Samoylov O.B., Usynin G.B., Bakhmetiev A.M. Bezopasnot yadernih energetixheskih ustanovok [Safety of Nuclear Power Installations]. Moscow: Energoizdat, 1989. 280 p. (in Russian).
  3. Dementev B.A. Yadernie Energeticheskie ustanovki [Nuclear Power Reactors]. Moscow: Energoatomizdat, 1990․ 352 p. (in Russian).
  4. Sterman L.C., Sharkov A.T., Tevlin S.A. Teplovie i elektricheskie stancii [Thermal and Nuclear Power Plants]. Moscow: Energoizdat, 1982․ 456 p. (in Russian).
  5. Gusev N.G., Беляев В.А. Radioaktivnie vibrosi v biosferu [Radioactive Releases into the Biosphere]. Moscow: Energoatomizdat, 1986․ 223 p. (in Russian).
  6. Margulova T.H. Atomie Elektricheskie stancii [Nuclear Power Plants]. Moscow: IzdAT, 1986.
    264 p. (in Russian).
  7. SP 2.6.1.24-03 Sanitarnie pravilа proektirovaniya i ekspluatacii atomnih stancii (SP AS-03) [SP 2.6.1.24-03 Sanitary Rules for the Design and Operation of Nuclear Power Plants (SP AC-03)]. URL: http:// http://www.remgost.ru/ (reference date: 29.04.2022) (in Russian).
  8. 2.6.1.28-2000 Pravila radiacionoy bezopasnosti pri ekspluatacii atomnih stancii (PRB АС-99) [SP 2.6.1.28-2000 Radiation Safety Rules for the Operation of Nuclear Power Plants (SRB AC-99)]. URL: http:// http://www.remgost.ru/ (reference date: 29.04.2022) (in Russian).
  9. Federal'nyye normy i pravila v oblasti ispol'zovaniya atomnoy energii «Obshie polojeniya obespecheniya bezopasnosti atomij stanci» (NP-001-15) Federal norms and rules in the field of the use of atomic energy «General Provisions for Ensuring the Safety of Nuclear Power Plants» (NP-001-15)]. URL : http:// https://meganorm.ru/Index2/1/4293756/4293756900.htm (reference date: 29.04.2022) (in Russian).
  10. Gevorgyan A.A., Oganesyan L.S., Khudaverdyan A.S. Fizika i osnovi ekspluatacii [Physics and Fundamentals of NPP Reactor Plant Operation]. Metsamor, 2002. 256 p. (in Russian).
  11. Gevorgyan A.A., Oganesyan L.S., Khudaverdyan A.S. Osnovi fiziki i eksluatacii reaktornoj ustanwki Armyqnskoy AES [Fundamentals of Physics and Operation of the Armenian Nuclear Power Plant]. Metsamor, 2000. 385 p.
    (in Russian).
  12. Saakyan A.P., O.Z. Marukhyan, V.G. Petrosyan Oborudovanie i rejim raboti energobloka s reaktorami VVER-440 [Equipment and Operating Modes of a Power Unit with WWER-440 Reactors]. Yerevan, 2017. 324 p. (in Russian).
Papers5 - 14
URL ArticleURL Article
 Open Article
Article NameCreation of Very Low-Level Waste Disposal Facility at Rostov NPP
AuthorsOlga I. Gorskaya, Yulia A. Fetisova
Address

«Rostov nuclear power plant» branch of Rosenergoatom Concern JSC, Volgodonsk, Rostov region,
Russia 347360

1gorskaya-oi@vdnpp.rosenergoatom.ru, ORCID iD: 0000-0003-3377-4654

2fetisova-ya@vdnpp.rosenergoatom.ru

AbstractThe paper considers the construction of a very low-level waste disposal facility (VLLW) at the Rostov NPP with a volume of 11,000 m3. Information about formation and management of VLLW at Rostov NPP is given. Characteristics of 11,000 m3 VLLW disposal facility is presented. The design documentation provides for construction of the VLLW disposal facility intended for disposal of very low-level waste of hazard classes IV and V formed as a result of Rostov NPP production activities and meeting the criteria of disposal acceptability.
KeywordsRostov NPP, very low-level waste (VLLW), disposal site, gamma-emitting waste, activity, radiation control, industrial waste, facilities.
LanguageRussian
References
  1. Federal'nyj zakon №89-FZ ot 24.06.1998 «Ob othodah proizvodstva i potrebleniya» [Federal Law No. 89-FZ of 24.06.1998 «Production and Consumption Waste»]. URL: http://www.consultant.ru/document/cons_doc_LAW_19109/ (in Russian).
  2. SP 2.6.6.2572-2010 «Obespechenie radiacionnoj bezopasnosti pri obrashchenii s promyshlennymi othodami atomnyh stancij, soderzhashchimi tekhnogennye radionuklidy» [SP 2.6.6.2572-2010 "Ensuring Radiation Safety When Handling Industrial Waste from Nuclear Power Plants Containing Man-Made Radionuclides]. URL: https://docs.cntd.ru/document/902199394 (in Russian).
  3. NP 058-14 Federal'nye normy i pravila v oblasti ispol'zovaniya atomnoj energii «Bezopasnost' pri obrashchenii s radioaktivnymi othodami. Obshchie polozheniya» [NP 058-14 Federal Norms and Rules in the Field of Atomic Energy Use «Safety in Handling of Radioactive Waste. General Provisions»]. URL: https://docs.cntd.ru/document/420215595 (in Russian).
  4. Federal'nyj zakon № 52-FZ ot 03.03.1999 g. «O sanitarno-epidemiologicheskom blagopoluchii naseleniya» [Federal Law No. 52-FZ of 03.03.1999 «Sanitary and Epidemiological Well-Being of the Population»]. URL: http://www.consultant.ru/document/cons_doc_LAW_22481/ (in Russian).
  5. Gradostroitel'nyj kodeks Rossijskoj Federacii № 190-FZ ot 29 dekabrya 2004 goda [City Planning Code of the Russian Federation No. 190-FZ of 29 December 2004]. URL: https://www.consultant.ru/document/cons_doc_LAW_51040/ (in Russian).
  6. SP 2.6.1.2612-10. «Osnovnye sanitarnye pravila obespecheniya radiacionnoj bezopasnosti» (OSPORB-99/2010) [SP 2.6.1.2612-10. «Basic Sanitary Rules for Ensuring Radiation Safety» (OSPORB-99/2010)]. URL: https://docs.cntd.ru/document/902214068 (in Russian).
  7. Postanovlenie Pravitel'stva RF ot 19.10.2012 N 1069 (red. ot 04.02.2015) «O kriteriyah otneseniya tverdyh, zhidkih i gazoobraznyh othodov k radioaktivnym othodam, kriteriyah otneseniya radioaktivnyh othodov k osobym radioaktivnym othodam i k udalyaemym radioaktivnym othodam i kriteriyah klassifikacii udalyaemyh radioaktivnyh othodov» [Decree of the Government of the Russian Federation of 19.10.2012 N 1069 (revised on 04.02.2015) «Criteria for Classifying Solid, Liquid and Gaseous Waste as Radioactive Waste, Criteria for Classifying Radioactive Waste as Special Radioactive Waste and Disposed Radioactive Waste and Criteria for Classification of Disposed Radioactive Waste»]. URL: https://docs.cntd.ru/document/902376375 (in Russian).
  8. Ochen' nizkoaktivnye radioaktivnye othody v sisteme bezopasnogo obrashcheniya s radioaktivnymi othodami [Very Low Level Radioactive Waste in the Safe Management of Radioactive Waste]. Nauchnyj portal «Atomnaya energiya 2.0» [The Atomic Energy 2.0 Science Portal.]. URL: https://www.atomic-energy.ru/SMI/2014/11/22/53160 (in Russian).
  9. Rybal'chenko I.L. Obrashchenie s othodami ochen' nizkogo urovnya aktivnosti. SHvedskij opyt [Management of Very Low-Level Waste. Swedish Experience]. St Petersburg, 2009. 36 p.
    (in Russian).
  10. United States Nuclear Regulatory Commission. URL: https://www.nrcgov/waste/llw-disposal/licensing/statistics (in English).
  11. SanPiN 2.1.3684-21 «Sanitarno-epidemiologicheskie trebovaniya k soderzhaniyu territorij gorodskih i sel'skih poselenij, k vodnym ob"ektam, pit'evoj vode i pit'evomu vodosnabzheniyu, atmosfernomu vozduhu, pochvam, zhilym pomeshcheniyam, ekspluatacii proizvodstvennyh, obshchestvennyh pomeshchenij, organizacii i provedeniyu sanitarno-protivoepidemicheskih (profilakticheskih) meropriyatij» [SanPiN 2.1.3684-21 «Sanitary and Epidemiological Requirements for the Maintenance of Urban and Rural Areas, Water Bodies, Drinking Water and Potable Water Supply, Atmospheric Air, Soils, Residential Premises, Operation of Industrial and Public Buildings, Organization and Implementation of Sanitary and Antiepidemic (Preventive) Measures»]. URL: https://docs.cntd.ru/document/573536177 (in Russian).
  12. SanPiN 1.2.3685-21 «Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya» [SanPiN 1.2.3685-21 "Hygienic Standards and Requirements to Ensure Safety and (or) Harmlessness for Humans of Environmental Factors]. URL: https://docs.cntd.ru/document/573500115 (in Russian).
Papers15 - 23
URL ArticleURL Article
 Open Article

Design, manufacturing and commissioning of nuclear industry equipment

Article NameInvestigation of the Possibility of Using Secondary Concrete Ouae in the Framework of Additive Technologies
AuthorsArsen R. Davtyan, Alexander V. Nakhabov
Address

National Research Nuclear University «MEPhI», Kashirskoye shosse, 31, Moscow, Russia 115409

1arsen.davtian2011@yandex.ru, ORCID iD: 0000-0002-8455-075X, WoS ResearherID: CAF-6986-2022

2AVNakhabov@mephi.ru, ORCID iD: 0000-0002-2323-8850

AbstractThe object of research in this work is to substantiate the methodology of the secondary use of concrete scrap obtained as a result of the dismantling of the OUAE. In this study secondary application is considered within the framework of additive technologies. Construction using additive technologies is one of the promising areas. This line of research is part of the justification of the method of secondary use of concrete obtained as a result of the dismantling of nuclear energy facilities (OUAE).
Keywordsrecycling of concrete, handling of low-level waste and very low-level waste, assessment of radioactive exposure, additive technologies, laboratory tests.
LanguageRussian
References

 

  1. Dubrovsky V.B. Radiacionnaya stojkost' stroitel'nyh materialov [Radiation Resistance of Building Materials]. Moscow:  Stroyizdat 1977, 279 p. (in Russian).
  2. Effect of Irradiation on the Strength of Concrete, AERE R 3332, UKAEA Reserch Report, 1960
    (in English).
  3. Dubrovsky, V.B. Radiacionnaya stojkost' materialov [Radiation resistance of materials]. Moscow:  Atomizdat, 1973. 264 p. (in Russian).
  4. Hilsdorf H.K., Kropp J. and Koch H.J. The Effects of Nuclear Radiation on the Mechanical Properties of Concrete. Published 1978, Materials Science (in English).
  5. A multi-scale review of the effects of gamma radiation on concrete. Yonathan Reches. Results in Materials. Volume 2, September 2019 (in English).
  6. Pessoa S., Guimarães A.S., Lucas S.S., & Simões N. (2021). 3D printing in the construction industry – A systematic review of the thermal performance in buildings. Renewable and Sustainable Energy Reviews, 141, 110794 (in English).
  7. Sushchnost' additivnyh tekhnologij v stroitel'stve [The essence of additive technologies in construction]. Nauka, kak instrument sovershenstvovaniya sovremennoj zhizni [Science as a tool for improving modern life]. Zhurnal po materialam XXVIII mezhdunarodnoj nauchno-prakticheskoj konferencii [Journal based on the materials of the XXVIII International scientific and practical conference]. Mineral'nye Vody: Kopir. mnozh. byuro SKF BGTU im. V. G.Shuhova [Mineralnye Vody: Copy Office of Bashkir State Technical University named after V. G. Shukhov]. 2018. №2(6). P.219 (in Russian).
  8. Labonnote N., Rønnquist A., Manum B., & Rüther P. (2016). Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 72, 347-366 (in English).
  9. Romanov M.R. 3D-pechat' v sovremennom stroitel'stve [3D printing in modern construction]. Nauchnye issledovaniya molodyh uchyonyh: sbornik statej XVII Mezhdunarodnoj nauchno-prakticheskoj konferencii [Scientific research of young scientists: collection of articles of the XVII International Scientific and Practical Conference]. Penza: MCNS «Nauka i Prosveshchenie» [Penza: ICNS «Science and Education»]. 2022. 136 p. (in Russian).
  10. Tolypin D.A. Effektivnyj sposob pererabotki betonnogo loma 3d-pechati [An effective way of processing concrete scrap 3d printing]. Stroitel'nye materialy i izdeliya [Building materials and products]. 2021. Volume 4. № 2. Р. 12-18 (in Russian).
  11. Glagolev E.S., Lesovik V.S., Zagorodnyuk L.H. & Podgorny D.S. Composite Binders and Dry Building Mixes for 3D Additive / Technologies // Proceedings of the International Conference Industrial and Civil Construction, 2021. Р. 229-235 (in English).
  12. Normy radiacionnoj bezopasnosti NRB-99/2009 Sanitarnye pravila i normativy SanPiN 2.6.1.2523-09 [Radiation safety Standards NRB-99/2009 Sanitary rules and regulations Sanitary Rules and Regulations 2.6.1.2523-09] (in Russian).
Papers24 - 33
URL ArticleURL Article
 Open Article
Article NameAnalysis of NPP Pressure Compensation Systems Оperation
AuthorsAlexander V. Razuvaev
Address

Balakovo Institute of Technology, NRNU MEPhI, 140 Chapaeva Str., Balakovo, Saratov region, Russia 413800

vipdomik@mail.ru, ORCID: 0000-0002-4593-0653

AbstractThe article deals with the relevance of solving issues to improve the energy efficiency of the use of extracted hydrocarbon fuel, as well as the feasibility of developing and applying these measures in the economies of industrially developed countries. The necessity of having a permanent reliable source of electricity when using renewable and alternative sources of electricity is substantiated. As a permanent and reliable source of electricity, it is proposed to use operating and developing nuclear power plants. The use of these power plants requires the improvement of various systems for various purposes in them. To do this, the paper presents an analysis of the parameters of the steam and gas systems of pressure compensators to ensure the necessary pressure of the coolant in the first circuit of the nuclear power plant. Analysis of the parameters of operation of these systems is presented in tabular readable form. Based on the analysis, a "hybrid" pressure compensator system is proposed for detailed consideration, which includes the positive properties of the pressure compensator systems under consideration - steam and gas. An estimated calculation of the possible use of air (or gas) in the free volume of the pressure compensator with the provision of preliminary pressure is presented, followed by bringing the value of this pressure to the required value during operation. The advantages and disadvantages of the considered systems and some issues that require detailed study are noted.
Keywordsnuclear power plant, pressure (volume) compensation system, steam pressure compensator system, gas pressure compensator system, initial pressure calculation, «hybrid» pressure compensator system.
LanguageRussian
References
  1. Energeticheskaya strategiya Rossii na period do 2035 goda (utverzhdena rasporyazheniem Pravitel'stva Rossijskoj Federacii ot 9 iyunya 2020 g. No 1523-r) [Energy Strategy of Russia for the Period up to 2035 (main provisions of the edition of 07.02.2014)]. URL: http://static.government.ru/media/files/w4sigFOiDjGVDYT4IgsApssm6mZRb7wx.pdf (in Russian).
  2. Sustainable Building Technologies, Olli Seppanen, (Translated from English and edited by Vladimir Ustinov).  URL : http://portal-energo.ru/articles/details/id/827 (in Russian).      
  3. Kuzheleva K.S., Grachev B.A. Energeticheskaya politika ES v oblasti VIE, energoeffektivnosti i vnedreniya novyh resursosberegayushchih tekhnologij [Energy Policy in the Field of Renewable Energy, Energy Efficiency and Introduction of New Resource-Saving Technologies]. Regional'naya energetika: bezopasnost' i effektivnost' [Regional Energy: Safety and Efficiency]. 2018. № 1. Р. 8-14 (in Russian).
  4. Khlopkin N.S. Morskaya atomnaya energetika [Marine Nuclear Power]. Moscow: MEPHI, 2007. 244 p. (in Russian).
  5. Gorbatov S.A. Analiz sistem kompensacii davleniya v reaktornoj ustanovke s vodo-vodyanym energeticheskim reaktorom (VVER) [Analysis of Pressure Compensation Systems in a Reactor Installation with a Pressurized Power Reactor (WWER)]. Molodoj uchenyj [A young scientist]. 2018. № 50(236). Р. 45-46 (in Russian).
  6. Margulova T.X. Atomnye elektricheskie stancii [Nuclear Power Plants]. Publishing on Atomic Engineering (IzdAT), 1994. 269 p. (in Russian).
  7. Razuvaev A.V., Razuvaev V.A. Analiz raboty parovoj sistemy sozdaniya i podderzhaniya povyshennogo davleniya teplonositelya v pervom konture yadernoj energeticheskoj ustanovki [Analysis of Steam System for Creating and Maintaining Increased Coolant Pressure in the First Circuit of a Nuclear Power Plant]. Vestnik KRSU [KRSU Bulletin]. 2021. Vol. 21. No 12. Р. 80-86 (in Russian).
  8. Patent na izobretenie № 2685220 Rossijskoj Federacii, MPK G21C 15/00 (2006/01). Ustrojstvo pervogo kontura dvuhkonturnoj yadernoj energeticheskoj ustanovki: opubl. 17.04.2019 Byul. № 11, Razuvaev A.V [Patent for Invention No. 2685220 of the Russian Federation, IPC G21C 15/00 (2006/01). The Device of the First Circuit of a Double-Circuit Nuclear Power Plant: publ. 17.04.2019 Bul. No 11, Razuvaev A.V.]. 6 p. (in Russian).
  9. Razuvaev A.V. Analiz gidravlicheskoj skhemy energoustanovok s dvigatelyami vnutrennego sgoraniya [Analysis of the Hydraulic Scheme of Power Plants with Internal Combustion Engines]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. 2020. № 3(36).  Р. 73-77 (in Russian).
  10. Proskuryakov K.N., Romanov P.A. Vliyanie kompensatora davleniya na logarifmicheskij dekrement zatuhaniya kolebaniya davleniya v pervom konture AES s VVER-1000 [Influence of Pressure Compensator on Logarithmic Decrement of Attenuation of Pressure Fluctuations in the First Circuit of Nuclear Power Plants with WWER-1000]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. 2013. № 1(6). Р. 43-53 (in Russian).
  11. Berdyshev V.F. Osnovy avtomatizatsiya tekhnologicheskikh proizvodstva filosofii rosov i vody [Fundamentals of Gas and Water Treatment Process Automation]. Moscow: MISIS, 2013. 136 p.
    (in Russian).
  12. Aminov R.Z. Kombinatsiya hydrogen energicheskih energokrov s somnykh ekateroki [Combining Hydrogen Energy Cycles with Nuclear Power Plants]. Moskva: Nauka [Moscow: Science], 2016. 949 p. (in Russian).
Papers34 - 41
URL ArticleURL Article
 Open Article
Article NameThe Use of Burnable Poisons in VVER-type Reactors to Reduce the Fraction of the Reactivity Margin Compensated by the Liquid System During Extended Runs
AuthorsAnvar R. Muzafarov, Vladimir I. Savander
Address

National Research Nuclear University «MEPhI», Kashirskoye shosse, 31, Moscow, Russia 115409

1anvar1996@yandex.ru, 1ORCID iD: 0000-0001-5292-2697, WoS Researcher ID: CAH-1551-2022

2visavander@mephi.ru, ORCID iD: 0000-0001-9309-5616, WoS Researcher ID: ABG-3490-2021

AbstractThe paper presents the results of a computational and theoretical analysis of the use of various burnable poisons placed in a fuel rod for the maximum reduction in the reactivity margin compensated by a liquid system based on a boron absorber for VVER-type reactors operating in extended campaigns. Various layouts of fuel rods placement in fuel assemblies and with different concentrations of burnable poisons are considered, which are considered natural gadolinium and erbium. The analysis is carried out using simplified models of fuel burnup at partial refueling.
KeywordsBurnable absorber (BP), polycell, VVER, Serpent, multiplication factor (K∞), excess reactivity, gadolinium, fuel rod, erbium, boron regulation.
LanguageRussian
References
  1. A. Galperin, M. Segev, A. Radkowsky. – Substitution of the Soluble Boron Reactivity Control System of a Pressurized Water Reactor by Gadolinium Burnable Poisons. Nuclear Technology. – 1986. – Volume 75, Issue 2. – P. 127-133. Published online: 10 May 2017 (in English). – doi: 10.13182/NT86-A33855
  2. L. Frybortova VVER-1000 fuel cycles analysis with different burnable absorbers. Nuclear engineering and design. – 2019. – Volume 351. – P. 167-174 (in English).
  3. F. Khoshaval, Sh. Sh. Foroutan, A. Zolfaghari, H. Minuchehr. Evaluation of burnable absorber rods effect on neutronic performance in fuel assembly of WWER-1000 reactor. Annals of nuclear Energy. – 2016. – Volume 87. – P. 648-658 (in English).
  4. R.A. Khrais, G.V. Tikhomirov, I.S. Saldikov and A.D. Smirnov. Neutronic analysis of VVER-1000 fuel assembly with different types of burnable absorbers using Monte-Carlo code Serpent. IOP Conf. Series: Journal of Physics: Conf. Series 1189 (2019). – P.1-14 (in English). – doi: 10.1088/1742-6596/1189/1/012002
  5. Muzafarov A.R., Savander V.I. Sopostavitel'nyy analiz vygorayushchikh poglotiteley neytronov na osnove erbiya i gadoliniya v reaktorakh tipa VVER s udlinennymi kampaniyami [Comparative Analysis of Burnable Neutron Absorbers Based on Erbium and Gadolinium in WWER type Reactors with Extended Runs]. Sbornik dokladov XVIII Mezhdunarodnoj nauchno-prakticheskoj konferencii «Bezopasnost' yadernoj energetiki», Rossiya, Volgodonsk, 19 – 20 maj [Collection of Reports of the XVIII International Scientific and Practical Conference «Safety of Nuclear Energy»]. Russia, Volgodonsk: VETI NRNU MEPhI, 2022. P.19-21 (in Russian).
  6. Abu Sondos M.A., Demin V.M., Savander V.I. Snizheniye ob"yema bornogo regulirovaniya zapasa reaktivnosti pri ispol'zovanii vygorayushchego poglotitelya na osnove (GD2O3) v toplive reaktora VVER-1200 [Decrease the Volume of Boric Regulation of the Reactivity when Using the Burnable Absorber on the Basis of (Gd2O3) in the Fuel Reactor WWER-1200]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. 2019.  №3(32).  P.56-65 (in Russian).
  7. Demin V.M., Savander V.I., Abu Sondos M.A. Vliyaniye vygorayushchikh poglotiteley (Gd i Eu) na neytronno fizicheskiye kharakteristiki TVS reaktorov VVER-1000 [The Effect of Burnable Absorbers (Gd and Eu) on the Neutron-Physical Characteristics of Fuel Assemblies of WWER-1000 Reactors]. Rostovskij nauchnyj zhurnal [Rostov Scientific Journal]. 2019. №3. P.262-272
    (in Russia).
  8. M.A. Abu Sondos, V.M. Demin, V.I. Savander. The effect of burnable absorbers (Gd and Eu) on the neutron-physical characteristics of fuel assemblies of VVER-1000. IOP Conf. Series: Journal of Physics: Conf. Series 1189 (2019). – P.1-14 (in English). – doi: 10.1088/1742-6596/1189/1/012003
  9. Stogov Yu.V., Belousov N.I. Savander V.I. et al. Perspektivnyye tekhnologii ispol'zovaniya oksidnogo uran-gadoliniyevogo topliva v legkovodnykh reaktorakh [Promising Technologies for Using Oxide Uranium-Gadolinium Fuel in Light Water Reactors]. Materialy XIV seminara po problemam fiziki reaktorov [Proceedings of the XIV Seminar on Problems of Reactor Physics]. Мoscow: МEPhI, 2006.  P.45-47 (in Russian).
  10. Yermolin V.S., Okunev V.S. O razmeshchenii gadoliniya v tsentral'nom otverstii TVELov vodo-vodyanykh reaktorov [Placement of Gadolinium in the Central Hole of Fuel Elements of Pressurized Water Reactors]. Nauchnaya sessiya MIFI [Scientific Session of MEPhI]. Moscow: МEPhI 2008. P.101 (in Russian).
  11. Andrushechko S.A., Vasil'yev B.Yu., Kosourov K.B., Semchenkov Yu.M., Kuchumov A.Yu., Ukraintsev V.F., Favorov B.Yu. VVER-1200: evolyutsiya klassiki. Fizicheskiye osnovy ekspluatatsii, sistemy i elementy, yadernoye toplivo, bezopasnost': monografiya [WWER-1200: the Evolution of the Classics. Physical Foundations of Operation, Systems and Elements, Nuclear Fuel, Safety: monograph]. Moscow: Logos, 2019.  P.672 (in Russian).
  12. Balestieri D.A. Study of UO2/Gd2O3 Composite fuel. IAEA-TECDOC-1036. Vienna (Austria). 1998. –  P.63-72 (in English).
  13. Fedosov A.M. RBMK Uranium-Erbium Fuel. Atomic Energy. 2018. – Vol.124. – №.4. – P.221-226 (in English).
  14. Alassaf S.H., Savander V.I., Hassan A.A. Ispol'zovaniye erbiya v kachestve vygorayushchego poglotitelya v reaktorakh tipa VVER pri rabote na udlinennykh kampaniyakh [The Use of Erbium as a Burnable Absorber in WWER-type Reactors during Operation on Extended Campaigns]. Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika. [News of Higher Education Institutions. Nuclear power engineering]. 2020. №3. P.62-71 (in Russian).
  15. J. Leppnen. Serpent – a Continuous – energy Monte Carlo Reactor Physics Burnup Calculation Code. VTT Technical Research Centre of Finland (June 18, 2015) (in English).
Papers42 - 54
URL ArticleURL Article
 Open Article

Operation of nuclear industry facilities

Article NamePrerequisites for the Implementation of a Risk-Oriented MRO Strategy for NPP Valves
AuthorsAlexander A. Lapkis, Viktor N. Nikiforov, Prokhor V. Povorov, Maxim V. Kalashnikov, Elena S. Arsentieva
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University «MEPhI», Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1AALapkis@mephi.ru, ORCID ID: 0000-0002-9431-7046

AbstractThe paper considers the relevance and possibility of developing methodological foundations for risk-oriented strategy of nuclear power plant equipment MRO on the example of pipeline valves. The pre-design study of the information system implementing these fundamentals is described.
Keywordsvalves, electric drive, defect, repair, MRO, risk-oriented, reliability, Markov chains.
LanguageRussian
References
  1. Shutikov A.V.Obosnovanie sposobov i effektivnosti povysheniya moshchnosti energoblokov AES s VVER vyshe nominal'nogo urovnya [Justification of Methods and Efficiency of Increasing the Capacity of Power Units of NPPs with WWER above the Nominal Level]. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Saratov State Technical University]. 2006. №4(20). Р.32-39 (in Russian).
  2. Maintaining the Design Integrity of Nuclear Installations throughout their Operating Life. INSAG-19. A report by the international nuclear safety advisory group. URL: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1178_web.pdf (in English).
  3. Povarov V.P. Nekotorye aspekty povtornogo prodleniya sroka ekspluatacii reaktornoj ustanovki s VVER-440 na primere energobloka № 4 Novovoronezhskoj [Some Aspects of Re-Extension of WWER-440 Reactor Unit No. 4 at Novovoronezh NPP]. Izvestiya vuzov. Yadernaya eneregtika [News of Higher Education Institutions. Nuclear Power Engineering]. 2019. №2. Р.91-104 (in Russian). DOI 10.26583/npe.2019.2.08
  4. STO 1.1.1.01.002.0069-2019 Pravila organizacii tekhnicheskogo obsluzhivaniya i remonta sistem i oborudovaniya atomnyh stancij [STO 1.1.1.01.002.0069-2017 Rules of Organization of Maintenance and Repair of Systems and Equipment of Nuclear Power Plants]. URL: https://files.stroyinf.ru/Data2/1/4293739/4293739253.pdf  (reference date: 04.04.2022) (in Russian)
  5. ST CKBA 008-2014 Armatura truboprovodnaya. Raschet i ocenka nadezhnosti i bezopasnosti na etape proektirovaniya [ST CKBA 008-2014 Pipeline Valves. Calculation and Evaluation of Reliability and Safety at Design Stage]. URL: https://files.stroyinf.ru/Data2/1/4293762/
    4293762631.pdf (reference date: 04.04.2022) (in Russian)
  6. STO 1.1.1.02.002.1857-2021 Tekhnicheskoe diagnostirovanie elektroprivodnoj truboprovodnoj promyshlennoj armatury na energoblokah atomnyh stancij [STO 1.1.1.02.002.1857-2021 Technical Diagnostics of Electric Pipeline Industrial Valves on Power Units of Nuclear Power Plants]. Rosenergoatom Concern OJSC. Moscow, 2021. 60 p. (in Russian).
  7. Rosenergoatom: Pervyj v Rossii proekt po vnedreniyu na AES sistemy prediktivnoj analitiki vyshel na finishnuyu pryamuyu.[ Rosenergoatom: Russia's First Project to Introduce a Predictive Analytics System at NPPs Has Reached the Finish Line] URL: https://www.rosenergoatom.ru/zhurnalistam/news/37790/ (reference date: 04.04.2022). (in Russian)
  8. Prediktivnaya analitika i diagnostika AES. Biblioteka tekhnicheskoj diagnostiki atomnyh elektrostancij[Predictive Analytics and Nuclear Power Plant Diagnostics. Technical Diagnostics Library for Nuclear Power Plants]. Moscow: JSC «NTCD». 2019. 69 p. (in Russian).
  9. Kalinushkin A.E., Mitin V.I., Semchenkov Yu.M. Sozdanie ekspertnyh sistem dlya yadernoj energetiki [        Building Expert Systems for Nuclear Power]. Atomnaya tekhnika za rubezhom [Nuclear Technology Abroad]. 1990. №7 (in Russian).
  10. Trykov E.L. i dr. Obnaruzhenie anomalij v rabote reaktornogo oborudovaniya s pomoshch'yu nejrosetevyh algoritmov [Reactor Equipment Anomaly Detection Using Neural Network Algorithms]. Izvestiya vysshih uchebnyh zavedenij. YAdernaya energetika [News of Higher Education Institutions. Nuclear Power Engineering]. 2020. №3. Р.136-147  (in Russian).
  11. Abidova E.A.Tekhnologii analiza diagnosticheskih parametrov elektroprivodnoj armatury na dejstvuyushchih energoblokah Novovoronezhskoj AES [Technologies for Analysis of Diagnostic Parameters of Electric Actuator Valves at Operating Power Units of Novovoronezh NPP]. Elektrotekhnicheskie kompleksy i sistemy upravleniya [Electrical Complexes and Control Systems]. 2014.  №4. P. 16-22 (in Russian).
  12. Matveev A.V., Zhidkov S.V.. Adamenkov A.K., Galivec E.Yu., Usanov D.A. «Kompleksnyj podhod k diagnostirovaniyu elektroprivodnoj armatury primenitel'no k zadacham upravleniya resursom» [An Integrated Approach to Diagnostics of Electric Actuated Valves as Applied to Service Life Management Tasks]. Armaturostroenie [Armature Construction]. 2009. №2(59).
    P. 53-59 (in Russian).
  13. NP-096-15 Trebovaniya k upravleniyu resursom oborudovaniya i truboprovodov atomnyh stancij. Osnovnye polozheniya [NP-096-15 Requirements for Lifetime Management of Equipment and Pipelines of Nuclear Power Plants. General provisions]. URL : http://cntr-nrs.gosnadzor.ru/about/AKTS/НП-096-15.pdf   (reference date: 04.04.2022) (in Russian).
  14. RB 024-19 Rukovodstvo po bezopasnosti pri ispol'zovanii atomnoj energii «Rekomendacii po razrabotke veroyatnostnogo analiza bezopasnosti urovnya 1 bloka atomnoj stancii dlya vnutrennih iskhodnyh sobytij» [RB 024-19 Guidance on Safety in the Use of Atomic Energy "Recommendations for the Development of a Probabilistic Safety Analysis of Level 1 Unit of a Nuclear Power Plant for Internal Baseline Events]. URL: https://docs.cntd.ru/document/560704037  (reference date: 04.04.2022) (in Russian).
  15. GOST R MEK 61165-2019 Nadezhnost' v tekhnike. Primenenie markovskih metodov [IEC 61165:2006, Application of Markov techniques, IDT]. URL: https://docs.cntd.ru/document/1200167576  (reference date: 04.04.2022) (in Russian).
  16. Slepov M.T., Sysoev N.P. Diagnostika EPA – opyt raboty Novovoronezhskoj AES.[ EPA Diagnostics - Novovoronezh NPP's Experience]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. 2014. №2. P.79-85 (in Russian).
  17. MT 1.2.3.02.999.0085-2010 Metodika «Diagnostirovanie truboprovodnoj elektroprivodnoj armatury»[МТ 1.2.3.02.999.0085-2010 Methodology «Diagnosis of Pipeline Electric Actuated Valves»]. Rosenergoatom Concern OJSC. Moscow, 2010. 140 p. (in Russian).
  18. Adamenkov A.K. Diagnosticheskoe obespechenie perekhoda na tekhnicheskoe obsluzhivanie i remont zaporno-reguliruyushchej armatury AES po tekhnicheskomu sostoyaniyu [Diagnostic Support for the Transition to Maintenance and Repair of NPP Shut-Off and Control Valves by Technical Condition]. Avtoreferat dissertacii na soiskanie uchyonoj stepeni kandidata tekhnicheskih nauk [Thesis Abstract of PhD in Engineering. Speciality: 05.04.11 - Nuclear Reactor Engineering, Machines, Units and Material Technology of Nuclear Industry]. Volgodonsk, 2009. 137 p. (in Russian).
Papers55 - 67
URL ArticleURL Article
 Open Article
Article NameWind Energy Development in the Context of Sustainable Development Goals
AuthorsMaria V. Golovko, Alexander N. Setrakov, Sergey A. Tomilin
Address

1Non-state accredited non-profit private educational institution of higher education «Academy of Marketing and Social and Information Technologies – IMSIT», Zipovskaya St.5, Southern Federal District, Krasnodar Region, Krasnodar, Russia 350010

2 Federal State Budgetary Educational Institution of Higher Education “Kuban State Agrarian University named after I.T. Trubilin”, Krasnodar Region, Krasnodar, Russia 350010

3Volgodonsk Branch of The Federal State State Educational Institution of Higher Education «Rostov Law Institute of Internal Affairs Ministry of Russian Federation», Stepnaya St., 40, Volgodonsk, Rostov region, Russia 347360

4Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University «MEPhI», Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1,2golovko178@mail.ru, ORCID iD: 0000-0002-4835-9800, WoS Researcher ID: J-2461-2016

3aleksandr-maior@inbox.ru, ORCID iD: 0000-0001-5599-440X, WoS Researcher ID: AAP-73782020

4SATomilin@mephi.ru, ORCID iD: 0000-0001-8661-8386, Wos Researher ID: G-3465-2017

AbstractThe paper analyses the current peculiarities of wind energy development in Russia. The importance of renewable energy sources for solving the problems of limited resources and environmental safety is defined. Some economic aspects of wind energy are given and the conclusion about insufficient efficiency and investment attractiveness of this energy generation sector is made. The positive impact of wind energy in the context of implementation of sustainable development goals is considered. The importance of territorial technological clusters for overcoming barriers to wind energy development, among which financial and regulatory factors dominate, is revealed. An example of objectives and planned results of wind energy development in Volgodonsk, Rostov region is given.
Keywordsrenewable energy, wind power, economic efficiency, sustainable development goals, barriers of development.
LanguageRussian
References
  1. Hussain Mustafa Zakir. Financing renewable energy options for developing financing instruments using public funds / Mustafa Zakir Hussain // The World Bank. – 2013. – URL : http://documents.worldbank.org/curated/en/196071468331818432/Financing-renewable-energy-optionsfor-developing-financing-instruments-using-publicfunds. – 01.12.2018 (in English).
  2. Cedrick B.Z.E. Investment Motivation in Renewable Energy: A PPP Approach / Bindzi Zogo Emmanuel Cedrick, Pr. Wei Long // Energy Procedia. – 2017. – Vol. 115. – P. 229-238 (in English). – DOI: 10.1016/j.egypro.2017.05.021
  3. Gatzert N. Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks / N. Gatzert, Th. Kosub // Renewable and Sustainable Energy Reviews. – 2016. – Vol. 60. – P. 982-998 (in English). – DOI: 10.1016/j.rser.2016.01.103
  4. Ho Andrew. The European offshore wind industry / Andrew Ho, Ariola Mbistrova. – Wind Europe Business Intelligence, 2016 (in English).
  5. Kitzing Lena. Auctions for Renewable Energy Support in Denmark: Instruments and Lessons Learnt / Lena Kitzing, Paul Wendring // Report D4.1-a, December 2015 (in English).
  6. Kozlova, Mariia. Modeling the effects of the new Russian capacity mechanism on renewable energy investments / Mariia Kozlova, Mikael Collan // Energy Policy. – 2016. – Vol. 95. – P. 320-360 (in English). – DOI:10.1016/j.enpol.2016.05.014
  7. Sedash T.N. х Renewable Energy Sources: Investment Promotion in Russia and Abroad]. Rossijskij vneshneekonomicheskij vestnik [Russian Foreign Trade Bulletin]. 2016. №. 4. Р. 94-97.
    (in Russian).
  8. Minenergo dorabotalo zakonoproekt o «zelyonyh» sertifikatah [Ministry of Energy Finalises the Bill on Green Certificates]. URL:  https://minenergo.gov.ru/node/22256 (in Russian).Pravitel'stvo utverdilo kriterii zelyonogo finansirovaniya [Government Approves Green Finance Criteria].  URL : http://government.ru/docs/43320/ (in Russian).
  9. Gurov G.A. [Financing Alternative Energy Projects as a Priority in the Innovation Vector]. Vestnik universiteta: Teoreticheskij i nauchno-metodicheskij zhurnal [University Bulletin: Theoretical and Scientific-Methodological Journal]. Moskva: Gosudarstvennyj universitet upravleniya [Moscow: State University of Management]. 2009. Issue 12 (in Russian).
  10. Gurov V.I. [New Possibilities of Wind Turbine Systems]. Energiya: ekon., tekhn., ekol. [Energy: Economy, Technology, Ecology]. 2010. № 5.
    Р. 32-35 (in Russian).
  11. Ratner R. [Financing Alternative Energy and Energy Efficiency Projects: International Experience and Russian Realities]. Finansovaya sistema [Financial System]. 2013. № 24(552). Р. 12-18 (in Russian).
  12. Ratner S.V. [Standardisation and Certification as Tools to Stimulate Wind Energy Development in China]. Nacional'nye interesy: prioritety i bezopasnost' [National Interests: Priorities and Security]. 2013. № 9. Р. 57-64 (in Russian).
  13. SHmyrev E.M. [Some Aspects of Energy Saving in District Heating Systems]. Energetik [Energetics]. – 1998. – № 9. – Р. 65-74 (in Russian).
  14. VIE v Rossii: pervyj shag sdelan, chto dal'she? [Wind Power in Russia: the First Step is Taken, What is Next?] – URL : https://www.forbes.ru/partnerskie-materialy/410301-vie-v-rossii-pervyy-shag-sdelan-chto-dalshe (in Russian).
  15. Rudenko, V.A. [Synchronization of Industry-Specific University Tasks with Rosatom's Development Strategy as a Factor of Nuclear Power Safety]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety].2020. №1. Р.98-106.
    (in Russian).
  16. Golovko М.В. Formirovanie relyacionnoj strategii kak faktor ekonomicheskoj bezopasnosti predpriyatij atomnoj otrasli (na primere mashinostroitel'nyh predpriyatij g. Volgodonska) [Formation of Relational Strategy as a Factor in the Economic Security of Enterprises in the Nuclear Industry (on the example of machine-building enterprises in the city of Volgodonsk)]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. 2020. №3. Р.104-110 (in Russian).
  17. Prognoz razvitiya VIE v Rossii do 2050 goda [Forecast of the Development of Wind Power in Russia until 2050. URL : https://www.iep.ru/files/Nauchniy_vestnik.ru/9-2019/40-47.pdf
    (in Russian).
  18. Perspektivy vetroenergeticheskogo rynka v Rossii [Prospects of Wind Energy Market in Russia]. – URL: https://wwindea.org/wp-content/uploads/2017/06/170612-FES-Windenergie-rus-print.pdf
    (in Russian).

 

Papers68 - 78
URL ArticleURL Article
 Open Article

Safety culture and social and economic aspects of nuclear infrastructure area development

Article NameManagement Decision Implementation Monitoring in the Process of Managing Culture of Industrial Enterprise Production Safety
AuthorsIrina E. Lyskova
Address

The Komi Republican Academy of State Service and Administration, Syktyvkar, Russia, 167000

IrinaLyskova@mail.ru,  ORCID iD: 0000-0003-2748-2794, WoS ResearherID: T-1644-2018

AbstractThe paper actualizes the theoretical foundations and practical aspects of managing the culture of industrial safety of industrial enterprises. The structural and substantive aspects of the organization of monitoring the implementation of management decisions in the process of managing the culture of industrial safety are revealed. A general analysis of the regulatory framework defining the basis for monitoring and evaluating the culture of industrial safety on the example of nuclear industry enterprises is proposed.
Keywordsproduction safety, production safety culture, management of production safety culture, control of the implementation of management decisions.
LanguageRussian
References
  1. Armstrong M., Beron A. (2012). Upravlenie rezultativnostyu. Sistema otsenki rezultatov v deystvii [Performance Management. Results Evaluation System in Action]. Moskva: Alpina Pablisher [Moscow: Alpina Publishing House] (in Russian).
  2. Kokinz G. (2016). Upravlenie rezultativnostyu: Kak preodolet razryv mezhdu obyavlennoy strategiey i realnymi protsessami [Performance Management: How to Bridge the Gap between the Announced Strategy and Real Processes]. Moskva: Alpina Pablisher [Moscow: Alpina Publishing House] (in Russian).
  3. Lyskova, I.E. Priverzhennost' rukovodstva celyam proizvodstvennoj bezopasnosti kak faktor formirovaniya integrirovannoj sistemy menedzhmenta bezopasnosti promyshlennyh predpriyatij [Commitment of the Management to Industrial Safety Goals as a Factor in Integrated Management System Formation for Industrial Enterprise Safety]. Global'naya yadernaya bezopasnost' [Global Nuclear Safety]. 2021. No. 4 (41). P. 73-91 (in Russian).
  4. Lyskova, I.E. Metodologicheskie osnovy upravleniya rezul'tativnost'yu kul'tury proizvodstvennoj bezopasnosti promyshlennyh predpriyatij [Methodological Bases for Managing the Performance of Occupational Safety Culture in Industrial Enterprises]. Ekonomicheskaya bezopasnost [Economic Safety] 2022. Vol. 5. № 2. doi: 10.18334/ecsec.5.2.114521 (in Russian).
  5. Lyutens, F. Organizacionnoe povedenie [Organizational Behavior]. Moscow: INFRA-M
    (in Russian).
  6. RB-047-16. Rukovodstvo bezopasnosti pri ispol'zovanii atomnoj energii. Metodika ocenki kul'tury bezopasnosti na predpriyatiyah toplivnogo cikla. Federal'naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru [RB-047-16. Safety Guidelines of Atomic Energy Use. Methodology of Safety Culture Assessing at Fuel Cycle Enterprises (RB-047-16). Federal Service of Environmental, Technological and Nuclear Supervision]. Moscow, 2016. URL: https://www.gosnadzor.ru/ (reference date 28.03.2022) (in Russian).
  7. RB-129-17. Rukovodstvo po bezopasnosti pri ispol'zovanii atomnoj energii. Rekomendacii po formirovaniyu i podderzhaniyu kul'tury bezopasnosti na atomnyh stanciyah i ekspluatiruyushchih organizaciyah atomnyh stancij. Federal'naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru [RB-129-17. Safety Guidelines in the Use of Atomic Energy. Recommendations for Formation and Maintenance of Safety Culture at Nuclear Power Plants and Operating Organizations of Nuclear Power Plants. Federal Service of Ecological, Technological and Nuclear Supervision]. 2016. URL: https://www.gosnadzor.ru/ (reference date 28.03.2022) (in Russian).
  8. №75-INSAG-4. MAGATE Mezhdunarodnaya konsul'tativnaya gruppa po yadernoj bezopasnosti. Kul'tura bezopasnosti. Seriya izdanij po bezopasnosti [INSAG-4. IAEA. International Nuclear Safety Advisory Group. Safety Culture. Safety Issue Series]. №75-INSAG-4. MAGATE, Vena, 1991. URL: https://www-pub.iaea.org/MTCD/Publications/PDF/ (reference date 28.03.2022)
    (in Russian).
  9. INSAG-15. MAGATE Mezhdunarodnaya konsul'tativnaya gruppa po yadernoj bezopasnosti. Klyuchevye voprosy praktiki povysheniya kul'tury bezopasnosti [INSAG-15. IAEA. International Nuclear Safety Advisory Group. Key Issues of Safety Culture Improvement Practices] INSAG-15. MAGATE, Vena, 2015. URL: https://www-pub.iaea.org/MTCD/Publications/PDF/ (reference date 28.03.2022) (in Russian).
  10. INSAG-13. MAGATE Mezhdunarodnaya konsul'tativnaya gruppa po yadernoj bezopasnosti. Menedzhment ekspluatacionnoj bezopasnosti na atomnyh elektrostanciyah [INSAG-13. IAEA. International Nuclear Safety Advisory Group. Operational Safety Management in Nuclear Power Plants] INSAG-13. MAGATE, Vena, 2015. URL: https://www-pub.iaea.org/MTCD/Publications/PDF/ (reference date 28.03.2022) (in Russian).
  11. Schein E.H. Organizatsionnaya kultura i liderstvo [Organizational culture and leadership]. 2002.SPb.: Piter [Saint-Petersburg: Piter] (in Russian).
  12. WANO Principles 2013-1. Osobennosti zdorovoj kul'tury yadernoj bezopasnosti [WANO Principles for a Strong Nuclear Safety Culture]. URL: https://www.wano.info (reference date 28.03.2022)
    (in Russian).
  13. Beer M., Ruh R.A. Employee Growth Through Performance Management // Harvard Business Review. 1976. № 4. p. 59-66 (in English).
  14. WANO GL 2006-02. 2006. WANO Principles for a Strong Nuclear Safety Culture. Guideline WANO GL 2006-02. URL:// https://www.wano.info (reference date 28.03.2022) (in English).
Papers79 - 92
URL ArticleURL Article
 Open Article
Article NameCulture and Ethics of Communication in the Distance Educational Process when Training Nuclear Specialists
AuthorsL.V. Zakharova, I.V. Zarochintseva, Yu.A. Lupinogina, O.A. Kikinchuk
Address

Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University “MEPhI”, Lenin St., 73/94, Volgodonsk, Rostov region, Russia 347360

1zakharova11@mail.ru, ORCID iD: 0000-0003-1496-3935, WoS Researcher ID: M-3905-2018

2michael.mus.2000@mail.ru, ORCID iD: 0000-0001-6412-8714, WoS Researcher ID: M-3835-2018

3matashonok@mail.ru, ORCID iD: 0000-0002-4327-1172, WoS Researcher ID: M-3826-2018

4OAKikinchuk@mephi.ru, ORCID iD: 0000-0003-2542-7732, WoS Researcher ID: CAG-0140-2022

AbstractThe paper considers the problems of formation of culture and ethics of communication in the distance learning process when training nuclear specialists, the basic principles and methods of communication of students online, analyzes the issues of ethics and communicative tolerance of students.
Keywordsculture and ethics of communication, distance education, communicative tolerance.
LanguageRussian
References
  1. Moiseeva N.I. Predposylki formirovaniya kommunikacionnoj etiki: deontologicheskie osnovaniya [Prerequisites for Communication Ethics: Deontological Foundations]. 2013. №11 (267). URL: http://www.relga.ru/Environ/WebObjects/tgu-www.woa/wa/Main?textid=3633&level1=main&
    level2=articles (in Russian).
  2. Legostaeva I.V. Otnoshenie studencheskoj molodezhi k distancionnomu formatu obucheniya v usloviyah pandemii: sociologicheskij analiz [Student Attitudes towards Distance Learning in a Pandemic: Sociological Analysis]. Mir nauki. Sociologiya, filologiya, kul'turologiya [World of Science. Sociology, Philology, Cultural Studies]. 2021. №2. URL : https://sfk-mn.ru/PDF/17SCSK221.pdf (in Russian).
  3. Onoprienko Yu.V., Tret'yakova T.V. Kul'tura obshcheniya studentov kak aktual'nyj vopros obrazovaniya [Culture Communication Students as Actual Question of Education] URL: https://scienceforum.ru/2012/article/2012001728 (in Russian).
  4. Borzunova A.K. Kommunikativnye neudachi kak sledstvie narusheniya rechevogo etiketa [Communicative Failures as a Consequence of Speech Etiquette Breaches]. Molodoj uchenyj [Young Scientist]. 2012. № 8 [43]. P. 79-83. URL: https://moluch.ru/archive/43/5176/ (in Russian).
  5. Kodeks etiki i sluzhebnogo povedeniya rabotnikov Goskorporacii "Rosatom" [Code of Ethics and Business Conduct of ROSATOM Employees].URL: https://rosatom.ru/upload/iblock/d08/
    d08a5dc6dedea5cf251f81e14f8742d7.pdf (in Russian).
  6. Krongauz M.A. Russkij yazyk na grani nervnogo sryva [The Russian Language is on the Point of Nervous Breakdown]. URL: http://philology.by/uploads/logo/krongauz2008.pdf (in Russian).
  7. Dorofeev A.A. Etiket v povsednevnoj kul'ture studentov [Etiquette in the Daily Culture of Students]. Pedagogika vysshej shkoly [Pedagogy of Higher Education]. 2016. № 3 [6]. p. 18-21. URL: https://moluch.ru/th/3/archive/43/1349/ (in Russian).
  8. Vvedenskaya L.A., Pavlova L.G., Kashaeva E.Yu. Russkij yazyk i kul'tura rechi. Spravochnoe posobie. Seriya «Vysshij ball» [Russian Language and Culture of Speech. Reference book. «A-Level Results» series]. – Rostov-na-Donu: Feniks [Rostov-on-Don: Phoenix]. 2002 – 384 p.
    (in Russian).
  9. Zaharova L.V., Zarochinceva I.V., Gunina L.A., Lupinogina Yu.A. Kul'tura rechi kak uslovie effektivnogo obshcheniya budushchih inzhenerov [Speech Culture as a Prerequisite for Effective Communication of Future Engineers]. Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya: Gumanitarnye nauki [Modern Science: Actual Problems of Theory and Practice. Series: Humanitarian Sciences].2018. № 6-2. P. 102-106 (in Russian).
  10. Zaharova L.V., Gunina L.A. Kul'tura delovogo obshcheniya kak vazhnyj faktor professional'nogo stanovleniya specialistov [The Culture of Business Communication as an Important Factor in the Professional Development]. Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Russkij i inostrannye yazyki i metodika ih prepodavaniya [Bulletin of Peoples' Friendship University of Russia. Series: Russian and Foreign Languages and their Teaching Methodology]. 2016. № 4. P. 156-165 (in Russian).
  11. Zaharova L.V., Gunina L.A. Kommunikativnye kompetencii v processe obucheniya inostrannomu yazyku v tekhnicheskom vuze [Communicative Competences in Foreign Language Teaching in a Technical University]. Inostrannye yazyki: lingvisticheskie i metodicheskie aspekty :mezhvuz. sb. nauch. tr. [ Foreign languages: linguistic and methodological aspects: interuniversity collection of scientific works] Tver, 2015. Issue 30. P. 66-74. (in Russian).
  12. Grishuk V.M. Formirovanie kommunikativnoj tolerantnosti u studentov gumanitarnyh special'nostej v vuze: avtoref. dis. … kand. ped. Nauk [Formation of Communicative Tolerance in Humanities Students at Higher Education Institution: Thesis Abstract of PhD in Education]. Kirov, 2005. – 20 p. (in Russian).
  13. Bojko V.V. Kommunikativnaya tolerantnost': metod. Posobie [Communicative Tolerance: Methodological Guide]. SPb.: SPbMAPO [St Petersburg Medical Academy of Postgraduate Education]. 2015. 365 p. (in Russian).
Papers93 - 101
URL ArticleURL Article
 Open Article